Optimal. Leaf size=22 \[ \frac {x-2 e^2 (1-x+2 \log (64)) \log (x)}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.04, antiderivative size = 22, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 3, integrand size = 37, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.081, Rules used = {14, 43, 2304} \begin {gather*} 2 e^2 \log (x)-\frac {2 e^2 (1+\log (4096)) \log (x)}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 43
Rule 2304
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {2 e^2 (-1+x-2 \log (64))}{x^2}+\frac {2 e^2 (1+\log (4096)) \log (x)}{x^2}\right ) \, dx\\ &=\left (2 e^2\right ) \int \frac {-1+x-2 \log (64)}{x^2} \, dx+\left (2 e^2 (1+\log (4096))\right ) \int \frac {\log (x)}{x^2} \, dx\\ &=-\frac {2 e^2 (1+\log (4096))}{x}-\frac {2 e^2 (1+\log (4096)) \log (x)}{x}+\left (2 e^2\right ) \int \left (\frac {1}{x}+\frac {-1-\log (4096)}{x^2}\right ) \, dx\\ &=2 e^2 \log (x)-\frac {2 e^2 (1+\log (4096)) \log (x)}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 24, normalized size = 1.09 \begin {gather*} 2 e^2 \left (\log (x)-\frac {\log (x)}{x}-\frac {\log (4096) \log (x)}{x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 20, normalized size = 0.91 \begin {gather*} \frac {2 \, {\left ({\left (x - 1\right )} e^{2} - 12 \, e^{2} \log \relax (2)\right )} \log \relax (x)}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.32, size = 26, normalized size = 1.18 \begin {gather*} \frac {2 \, {\left (x e^{2} \log \relax (x) - 12 \, e^{2} \log \relax (2) \log \relax (x) - e^{2} \log \relax (x)\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 23, normalized size = 1.05
method | result | size |
risch | \(-\frac {2 \,{\mathrm e}^{2} \left (12 \ln \relax (2)+1\right ) \ln \relax (x )}{x}+2 \,{\mathrm e}^{2} \ln \relax (x )\) | \(23\) |
norman | \(\frac {\left (-24 \,{\mathrm e}^{2} \ln \relax (2)-2 \,{\mathrm e}^{2}\right ) \ln \relax (x )+2 x \,{\mathrm e}^{2} \ln \relax (x )}{x}\) | \(27\) |
default | \(24 \,{\mathrm e}^{2} \ln \relax (2) \left (-\frac {\ln \relax (x )}{x}-\frac {1}{x}\right )+2 \,{\mathrm e}^{2} \left (-\frac {\ln \relax (x )}{x}-\frac {1}{x}\right )+\frac {24 \,{\mathrm e}^{2} \ln \relax (2)}{x}+2 \,{\mathrm e}^{2} \ln \relax (x )+\frac {2 \,{\mathrm e}^{2}}{x}\) | \(60\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.35, size = 53, normalized size = 2.41 \begin {gather*} -24 \, {\left (\frac {\log \relax (x)}{x} + \frac {1}{x}\right )} e^{2} \log \relax (2) - 2 \, {\left (\frac {\log \relax (x)}{x} + \frac {1}{x}\right )} e^{2} + 2 \, e^{2} \log \relax (x) + \frac {24 \, e^{2} \log \relax (2)}{x} + \frac {2 \, e^{2}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.42, size = 18, normalized size = 0.82 \begin {gather*} -\frac {2\,{\mathrm {e}}^2\,\ln \relax (x)\,\left (12\,\ln \relax (2)-x+1\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 27, normalized size = 1.23 \begin {gather*} 2 e^{2} \log {\relax (x )} + \frac {\left (- 24 e^{2} \log {\relax (2 )} - 2 e^{2}\right ) \log {\relax (x )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________