Optimal. Leaf size=22 \[ \log \left (\frac {(-8+x)^2}{\left (-5+e^{2 x^2} x^4\right )^2}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.03, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-10+e^{2 x^2} \left (64 x^3-6 x^4+64 x^5-8 x^6\right )}{40-5 x+e^{2 x^2} \left (-8 x^4+x^5\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-10+e^{2 x^2} \left (64 x^3-6 x^4+64 x^5-8 x^6\right )}{(8-x) \left (5-e^{2 x^2} x^4\right )} \, dx\\ &=\int \left (-\frac {2 \left (-32+3 x-32 x^2+4 x^3\right )}{(-8+x) x}-\frac {40 \left (1+x^2\right )}{x \left (-5+e^{2 x^2} x^4\right )}\right ) \, dx\\ &=-\left (2 \int \frac {-32+3 x-32 x^2+4 x^3}{(-8+x) x} \, dx\right )-40 \int \frac {1+x^2}{x \left (-5+e^{2 x^2} x^4\right )} \, dx\\ &=-\left (2 \int \left (\frac {1}{8-x}+\frac {4}{x}+4 x\right ) \, dx\right )-20 \operatorname {Subst}\left (\int \frac {1+x}{x \left (-5+e^{2 x} x^2\right )} \, dx,x,x^2\right )\\ &=-4 x^2+2 \log (8-x)-8 \log (x)-20 \operatorname {Subst}\left (\int \left (\frac {1}{-5+e^{2 x} x^2}+\frac {1}{x \left (-5+e^{2 x} x^2\right )}\right ) \, dx,x,x^2\right )\\ &=-4 x^2+2 \log (8-x)-8 \log (x)-20 \operatorname {Subst}\left (\int \frac {1}{-5+e^{2 x} x^2} \, dx,x,x^2\right )-20 \operatorname {Subst}\left (\int \frac {1}{x \left (-5+e^{2 x} x^2\right )} \, dx,x,x^2\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.20, size = 120, normalized size = 5.45 \begin {gather*} -2 \log \left (5-4096 e^{128+32 (-8+x)+2 (-8+x)^2}-2048 e^{128+32 (-8+x)+2 (-8+x)^2} (-8+x)-384 e^{128+32 (-8+x)+2 (-8+x)^2} (-8+x)^2-32 e^{128+32 (-8+x)+2 (-8+x)^2} (-8+x)^3-e^{128+32 (-8+x)+2 (-8+x)^2} (-8+x)^4\right )+2 \log (-8+x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 30, normalized size = 1.36 \begin {gather*} 2 \, \log \left (x - 8\right ) - 8 \, \log \relax (x) - 2 \, \log \left (\frac {x^{4} e^{\left (2 \, x^{2}\right )} - 5}{x^{4}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.25, size = 22, normalized size = 1.00 \begin {gather*} -2 \, \log \left (x^{4} e^{\left (2 \, x^{2}\right )} - 5\right ) + 2 \, \log \left (x - 8\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 23, normalized size = 1.05
method | result | size |
norman | \(2 \ln \left (-8+x \right )-2 \ln \left (x^{4} {\mathrm e}^{2 x^{2}}-5\right )\) | \(23\) |
risch | \(-8 \ln \relax (x )+2 \ln \left (-8+x \right )-2 \ln \left ({\mathrm e}^{2 x^{2}}-\frac {5}{x^{4}}\right )\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.76, size = 30, normalized size = 1.36 \begin {gather*} 2 \, \log \left (x - 8\right ) - 8 \, \log \relax (x) - 2 \, \log \left (\frac {x^{4} e^{\left (2 \, x^{2}\right )} - 5}{x^{4}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.15, size = 22, normalized size = 1.00 \begin {gather*} 2\,\ln \left (x-8\right )-2\,\ln \left (x^4\,{\mathrm {e}}^{2\,x^2}-5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.23, size = 26, normalized size = 1.18 \begin {gather*} - 8 \log {\relax (x )} + 2 \log {\left (x - 8 \right )} - 2 \log {\left (e^{2 x^{2}} - \frac {5}{x^{4}} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________