Optimal. Leaf size=16 \[ 25+16 e^{4+\frac {8}{3+x}} x \]
________________________________________________________________________________________
Rubi [F] time = 0.26, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {2 (10+2 x)}{3+x}} \left (144-32 x+16 x^2\right )}{9+6 x+x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\frac {2 (10+2 x)}{3+x}} \left (144-32 x+16 x^2\right )}{(3+x)^2} \, dx\\ &=\int \left (16 e^{\frac {2 (10+2 x)}{3+x}}+\frac {384 e^{\frac {2 (10+2 x)}{3+x}}}{(3+x)^2}-\frac {128 e^{\frac {2 (10+2 x)}{3+x}}}{3+x}\right ) \, dx\\ &=16 \int e^{\frac {2 (10+2 x)}{3+x}} \, dx-128 \int \frac {e^{\frac {2 (10+2 x)}{3+x}}}{3+x} \, dx+384 \int \frac {e^{\frac {2 (10+2 x)}{3+x}}}{(3+x)^2} \, dx\\ &=16 \int e^{\frac {2 (10+2 x)}{3+x}} \, dx-128 \int \frac {e^{4+\frac {8}{3+x}}}{3+x} \, dx+384 \int \frac {e^{4+\frac {8}{3+x}}}{(3+x)^2} \, dx\\ &=-48 e^{4+\frac {8}{3+x}}+128 e^4 \text {Ei}\left (\frac {8}{3+x}\right )+16 \int e^{\frac {2 (10+2 x)}{3+x}} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 14, normalized size = 0.88 \begin {gather*} 16 e^{4+\frac {8}{3+x}} x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.66, size = 14, normalized size = 0.88 \begin {gather*} 16 \, x e^{\left (\frac {4 \, {\left (x + 5\right )}}{x + 3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.36, size = 50, normalized size = 3.12 \begin {gather*} -\frac {16 \, {\left (\frac {3 \, {\left (x + 5\right )} e^{\left (\frac {4 \, {\left (x + 5\right )}}{x + 3}\right )}}{x + 3} - 5 \, e^{\left (\frac {4 \, {\left (x + 5\right )}}{x + 3}\right )}\right )}}{\frac {x + 5}{x + 3} - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.42, size = 15, normalized size = 0.94
method | result | size |
risch | \(16 x \,{\mathrm e}^{\frac {20+4 x}{3+x}}\) | \(15\) |
gosper | \(16 x \,{\mathrm e}^{\frac {20+4 x}{3+x}}\) | \(17\) |
derivativedivides | \(16 \,{\mathrm e}^{\frac {8}{3+x}+4} \left (3+x \right )-48 \,{\mathrm e}^{\frac {8}{3+x}+4}\) | \(33\) |
default | \(16 \,{\mathrm e}^{\frac {8}{3+x}+4} \left (3+x \right )-48 \,{\mathrm e}^{\frac {8}{3+x}+4}\) | \(33\) |
norman | \(\frac {48 x \,{\mathrm e}^{\frac {20+4 x}{3+x}}+16 x^{2} {\mathrm e}^{\frac {20+4 x}{3+x}}}{3+x}\) | \(44\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} 16 \, x e^{\left (\frac {8}{x + 3} + 4\right )} - 18 \, e^{\left (\frac {8}{x + 3} + 4\right )} - 144 \, \int \frac {e^{\left (\frac {8}{x + 3} + 4\right )}}{x^{2} + 6 \, x + 9}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.11, size = 15, normalized size = 0.94 \begin {gather*} 16\,x\,{\mathrm {e}}^{\frac {4\,x+20}{x+3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 12, normalized size = 0.75 \begin {gather*} 16 x e^{\frac {2 \left (2 x + 10\right )}{x + 3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________