Optimal. Leaf size=20 \[ \frac {625}{4} \left (-e^{1-e^5+x^2}+x\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 22, normalized size of antiderivative = 1.10, number of steps used = 3, number of rules used = 2, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.095, Rules used = {12, 2209} \begin {gather*} \frac {625 x}{4}-\frac {625}{4} e^{x^2-e^5+1} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2209
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{4} \int \left (625-1250 e^{1-e^5+x^2} x\right ) \, dx\\ &=\frac {625 x}{4}-\frac {625}{2} \int e^{1-e^5+x^2} x \, dx\\ &=-\frac {625}{4} e^{1-e^5+x^2}+\frac {625 x}{4}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 20, normalized size = 1.00 \begin {gather*} \frac {625}{4} \left (-e^{1-e^5+x^2}+x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 16, normalized size = 0.80 \begin {gather*} \frac {625}{4} \, x - \frac {625}{4} \, e^{\left (x^{2} - e^{5} + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.53, size = 16, normalized size = 0.80 \begin {gather*} \frac {625}{4} \, x - \frac {625}{4} \, e^{\left (x^{2} - e^{5} + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.01, size = 17, normalized size = 0.85
method | result | size |
default | \(\frac {625 x}{4}-\frac {625 \,{\mathrm e}^{-{\mathrm e}^{5}+x^{2}+1}}{4}\) | \(17\) |
norman | \(\frac {625 x}{4}-\frac {625 \,{\mathrm e}^{-{\mathrm e}^{5}+x^{2}+1}}{4}\) | \(17\) |
risch | \(\frac {625 x}{4}-\frac {625 \,{\mathrm e}^{-{\mathrm e}^{5}+x^{2}+1}}{4}\) | \(17\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 16, normalized size = 0.80 \begin {gather*} \frac {625}{4} \, x - \frac {625}{4} \, e^{\left (x^{2} - e^{5} + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.57, size = 17, normalized size = 0.85 \begin {gather*} \frac {625\,x}{4}-\frac {625\,{\mathrm {e}}^{-{\mathrm {e}}^5}\,{\mathrm {e}}^{x^2}\,\mathrm {e}}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.09, size = 17, normalized size = 0.85 \begin {gather*} \frac {625 x}{4} - \frac {625 e^{x^{2} - e^{5} + 1}}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________