Optimal. Leaf size=29 \[ 4+x+\left (-e^x+x^2 \left (3-e^x x\right ) \log ^2\left (x^2\right )\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 2.43, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \left (1+2 e^{2 x}+\left (-24 e^x x+8 e^{2 x} x^2\right ) \log \left (x^2\right )+\left (e^x \left (-12 x-6 x^2\right )+e^{2 x} \left (6 x^2+4 x^3\right )\right ) \log ^2\left (x^2\right )+\left (72 x^3-48 e^x x^4+8 e^{2 x} x^5\right ) \log ^3\left (x^2\right )+\left (36 x^3+e^x \left (-30 x^4-6 x^5\right )+e^{2 x} \left (6 x^5+2 x^6\right )\right ) \log ^4\left (x^2\right )\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=x+2 \int e^{2 x} \, dx+\int \left (-24 e^x x+8 e^{2 x} x^2\right ) \log \left (x^2\right ) \, dx+\int \left (e^x \left (-12 x-6 x^2\right )+e^{2 x} \left (6 x^2+4 x^3\right )\right ) \log ^2\left (x^2\right ) \, dx+\int \left (72 x^3-48 e^x x^4+8 e^{2 x} x^5\right ) \log ^3\left (x^2\right ) \, dx+\int \left (36 x^3+e^x \left (-30 x^4-6 x^5\right )+e^{2 x} \left (6 x^5+2 x^6\right )\right ) \log ^4\left (x^2\right ) \, dx\\ &=e^{2 x}+x+24 e^x \log \left (x^2\right )+2 e^{2 x} \log \left (x^2\right )-24 e^x x \log \left (x^2\right )-4 e^{2 x} x \log \left (x^2\right )+4 e^{2 x} x^2 \log \left (x^2\right )-\int \frac {4 e^x \left (-12 (-1+x)+e^x \left (1-2 x+2 x^2\right )\right )}{x} \, dx+\int 2 e^x x \left (-6-3 x+3 e^x x+2 e^x x^2\right ) \log ^2\left (x^2\right ) \, dx+\int 8 x^3 \left (3-e^x x\right )^2 \log ^3\left (x^2\right ) \, dx+\int 2 x^3 \left (18+e^{2 x} x^2 (3+x)-3 e^x x (5+x)\right ) \log ^4\left (x^2\right ) \, dx\\ &=e^{2 x}+x+24 e^x \log \left (x^2\right )+2 e^{2 x} \log \left (x^2\right )-24 e^x x \log \left (x^2\right )-4 e^{2 x} x \log \left (x^2\right )+4 e^{2 x} x^2 \log \left (x^2\right )+2 \int e^x x \left (-6-3 x+3 e^x x+2 e^x x^2\right ) \log ^2\left (x^2\right ) \, dx+2 \int x^3 \left (18+e^{2 x} x^2 (3+x)-3 e^x x (5+x)\right ) \log ^4\left (x^2\right ) \, dx-4 \int \frac {e^x \left (-12 (-1+x)+e^x \left (1-2 x+2 x^2\right )\right )}{x} \, dx+8 \int x^3 \left (3-e^x x\right )^2 \log ^3\left (x^2\right ) \, dx\\ &=e^{2 x}+x+24 e^x \log \left (x^2\right )+2 e^{2 x} \log \left (x^2\right )-24 e^x x \log \left (x^2\right )-4 e^{2 x} x \log \left (x^2\right )+4 e^{2 x} x^2 \log \left (x^2\right )+2 \int \left (-3 e^x x (2+x) \log ^2\left (x^2\right )+e^{2 x} x^2 (3+2 x) \log ^2\left (x^2\right )\right ) \, dx+2 \int \left (18 x^3 \log ^4\left (x^2\right )+e^{2 x} x^5 (3+x) \log ^4\left (x^2\right )-3 e^x x^4 (5+x) \log ^4\left (x^2\right )\right ) \, dx-4 \int \left (-\frac {12 e^x (-1+x)}{x}+\frac {e^{2 x} \left (1-2 x+2 x^2\right )}{x}\right ) \, dx+8 \int \left (9 x^3 \log ^3\left (x^2\right )-6 e^x x^4 \log ^3\left (x^2\right )+e^{2 x} x^5 \log ^3\left (x^2\right )\right ) \, dx\\ &=e^{2 x}+x+24 e^x \log \left (x^2\right )+2 e^{2 x} \log \left (x^2\right )-24 e^x x \log \left (x^2\right )-4 e^{2 x} x \log \left (x^2\right )+4 e^{2 x} x^2 \log \left (x^2\right )+2 \int e^{2 x} x^2 (3+2 x) \log ^2\left (x^2\right ) \, dx+2 \int e^{2 x} x^5 (3+x) \log ^4\left (x^2\right ) \, dx-4 \int \frac {e^{2 x} \left (1-2 x+2 x^2\right )}{x} \, dx-6 \int e^x x (2+x) \log ^2\left (x^2\right ) \, dx-6 \int e^x x^4 (5+x) \log ^4\left (x^2\right ) \, dx+8 \int e^{2 x} x^5 \log ^3\left (x^2\right ) \, dx+36 \int x^3 \log ^4\left (x^2\right ) \, dx+48 \int \frac {e^x (-1+x)}{x} \, dx-48 \int e^x x^4 \log ^3\left (x^2\right ) \, dx+72 \int x^3 \log ^3\left (x^2\right ) \, dx\\ &=e^{2 x}+x+24 e^x \log \left (x^2\right )+2 e^{2 x} \log \left (x^2\right )-24 e^x x \log \left (x^2\right )-4 e^{2 x} x \log \left (x^2\right )+4 e^{2 x} x^2 \log \left (x^2\right )+18 x^4 \log ^3\left (x^2\right )+9 x^4 \log ^4\left (x^2\right )+2 \int \left (3 e^{2 x} x^2 \log ^2\left (x^2\right )+2 e^{2 x} x^3 \log ^2\left (x^2\right )\right ) \, dx+2 \int \left (3 e^{2 x} x^5 \log ^4\left (x^2\right )+e^{2 x} x^6 \log ^4\left (x^2\right )\right ) \, dx-4 \int \left (-2 e^{2 x}+\frac {e^{2 x}}{x}+2 e^{2 x} x\right ) \, dx-6 \int \left (2 e^x x \log ^2\left (x^2\right )+e^x x^2 \log ^2\left (x^2\right )\right ) \, dx-6 \int \left (5 e^x x^4 \log ^4\left (x^2\right )+e^x x^5 \log ^4\left (x^2\right )\right ) \, dx+8 \int e^{2 x} x^5 \log ^3\left (x^2\right ) \, dx+48 \int \left (e^x-\frac {e^x}{x}\right ) \, dx-48 \int e^x x^4 \log ^3\left (x^2\right ) \, dx-72 \int x^3 \log ^3\left (x^2\right ) \, dx-108 \int x^3 \log ^2\left (x^2\right ) \, dx\\ &=e^{2 x}+x+24 e^x \log \left (x^2\right )+2 e^{2 x} \log \left (x^2\right )-24 e^x x \log \left (x^2\right )-4 e^{2 x} x \log \left (x^2\right )+4 e^{2 x} x^2 \log \left (x^2\right )-27 x^4 \log ^2\left (x^2\right )+9 x^4 \log ^4\left (x^2\right )+2 \int e^{2 x} x^6 \log ^4\left (x^2\right ) \, dx-4 \int \frac {e^{2 x}}{x} \, dx+4 \int e^{2 x} x^3 \log ^2\left (x^2\right ) \, dx-6 \int e^x x^2 \log ^2\left (x^2\right ) \, dx+6 \int e^{2 x} x^2 \log ^2\left (x^2\right ) \, dx-6 \int e^x x^5 \log ^4\left (x^2\right ) \, dx+6 \int e^{2 x} x^5 \log ^4\left (x^2\right ) \, dx+8 \int e^{2 x} \, dx-8 \int e^{2 x} x \, dx+8 \int e^{2 x} x^5 \log ^3\left (x^2\right ) \, dx-12 \int e^x x \log ^2\left (x^2\right ) \, dx-30 \int e^x x^4 \log ^4\left (x^2\right ) \, dx+48 \int e^x \, dx-48 \int \frac {e^x}{x} \, dx-48 \int e^x x^4 \log ^3\left (x^2\right ) \, dx+108 \int x^3 \log \left (x^2\right ) \, dx+108 \int x^3 \log ^2\left (x^2\right ) \, dx\\ &=48 e^x+5 e^{2 x}+x-4 e^{2 x} x-\frac {27 x^4}{2}-48 \text {Ei}(x)-4 \text {Ei}(2 x)+24 e^x \log \left (x^2\right )+2 e^{2 x} \log \left (x^2\right )-24 e^x x \log \left (x^2\right )-4 e^{2 x} x \log \left (x^2\right )+4 e^{2 x} x^2 \log \left (x^2\right )+27 x^4 \log \left (x^2\right )+9 x^4 \log ^4\left (x^2\right )+2 \int e^{2 x} x^6 \log ^4\left (x^2\right ) \, dx+4 \int e^{2 x} \, dx+4 \int e^{2 x} x^3 \log ^2\left (x^2\right ) \, dx-6 \int e^x x^2 \log ^2\left (x^2\right ) \, dx+6 \int e^{2 x} x^2 \log ^2\left (x^2\right ) \, dx-6 \int e^x x^5 \log ^4\left (x^2\right ) \, dx+6 \int e^{2 x} x^5 \log ^4\left (x^2\right ) \, dx+8 \int e^{2 x} x^5 \log ^3\left (x^2\right ) \, dx-12 \int e^x x \log ^2\left (x^2\right ) \, dx-30 \int e^x x^4 \log ^4\left (x^2\right ) \, dx-48 \int e^x x^4 \log ^3\left (x^2\right ) \, dx-108 \int x^3 \log \left (x^2\right ) \, dx\\ &=48 e^x+7 e^{2 x}+x-4 e^{2 x} x-48 \text {Ei}(x)-4 \text {Ei}(2 x)+24 e^x \log \left (x^2\right )+2 e^{2 x} \log \left (x^2\right )-24 e^x x \log \left (x^2\right )-4 e^{2 x} x \log \left (x^2\right )+4 e^{2 x} x^2 \log \left (x^2\right )+9 x^4 \log ^4\left (x^2\right )+2 \int e^{2 x} x^6 \log ^4\left (x^2\right ) \, dx+4 \int e^{2 x} x^3 \log ^2\left (x^2\right ) \, dx-6 \int e^x x^2 \log ^2\left (x^2\right ) \, dx+6 \int e^{2 x} x^2 \log ^2\left (x^2\right ) \, dx-6 \int e^x x^5 \log ^4\left (x^2\right ) \, dx+6 \int e^{2 x} x^5 \log ^4\left (x^2\right ) \, dx+8 \int e^{2 x} x^5 \log ^3\left (x^2\right ) \, dx-12 \int e^x x \log ^2\left (x^2\right ) \, dx-30 \int e^x x^4 \log ^4\left (x^2\right ) \, dx-48 \int e^x x^4 \log ^3\left (x^2\right ) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.62, size = 47, normalized size = 1.62 \begin {gather*} e^{2 x}+x+2 e^x x^2 \left (-3+e^x x\right ) \log ^2\left (x^2\right )+x^4 \left (-3+e^x x\right )^2 \log ^4\left (x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.60, size = 58, normalized size = 2.00 \begin {gather*} {\left (x^{6} e^{\left (2 \, x\right )} - 6 \, x^{5} e^{x} + 9 \, x^{4}\right )} \log \left (x^{2}\right )^{4} + 2 \, {\left (x^{3} e^{\left (2 \, x\right )} - 3 \, x^{2} e^{x}\right )} \log \left (x^{2}\right )^{2} + x + e^{\left (2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.93, size = 259, normalized size = 8.93 \begin {gather*} -18 \, x^{4} \log \left (x^{2}\right )^{3} - {\left (4 \, x^{5} - 10 \, x^{4} + 20 \, x^{3} - 30 \, x^{2} + 30 \, x - 15\right )} e^{\left (2 \, x\right )} \log \left (x^{2}\right )^{3} + 48 \, {\left (x^{4} - 4 \, x^{3} + 12 \, x^{2} - 24 \, x + 24\right )} e^{x} \log \left (x^{2}\right )^{3} + {\left (x^{6} e^{\left (2 \, x\right )} - 6 \, x^{5} e^{x} + 9 \, x^{4}\right )} \log \left (x^{2}\right )^{4} + {\left (18 \, x^{4} + {\left (4 \, x^{5} - 10 \, x^{4} + 20 \, x^{3} - 30 \, x^{2} + 30 \, x - 15\right )} e^{\left (2 \, x\right )} - 48 \, {\left (x^{4} - 4 \, x^{3} + 12 \, x^{2} - 24 \, x + 24\right )} e^{x}\right )} \log \left (x^{2}\right )^{3} - 2 \, {\left (2 \, x^{2} - 2 \, x + 1\right )} e^{\left (2 \, x\right )} \log \left (x^{2}\right ) + 24 \, {\left (x - 1\right )} e^{x} \log \left (x^{2}\right ) + 2 \, {\left (x^{3} e^{\left (2 \, x\right )} - 3 \, x^{2} e^{x}\right )} \log \left (x^{2}\right )^{2} + 2 \, {\left ({\left (2 \, x^{2} - 2 \, x + 1\right )} e^{\left (2 \, x\right )} - 12 \, {\left (x - 1\right )} e^{x}\right )} \log \left (x^{2}\right ) + x + e^{\left (2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.57, size = 2156, normalized size = 74.34
method | result | size |
risch | \(\text {Expression too large to display}\) | \(2156\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.45, size = 61, normalized size = 2.10 \begin {gather*} 144 \, x^{4} \log \relax (x)^{4} + 8 \, {\left (2 \, x^{6} \log \relax (x)^{4} + x^{3} \log \relax (x)^{2}\right )} e^{\left (2 \, x\right )} - 24 \, {\left (4 \, x^{5} \log \relax (x)^{4} + x^{2} \log \relax (x)^{2}\right )} e^{x} + x + e^{\left (2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.63, size = 59, normalized size = 2.03 \begin {gather*} \left (x^6\,{\mathrm {e}}^{2\,x}-6\,x^5\,{\mathrm {e}}^x+9\,x^4\right )\,{\ln \left (x^2\right )}^4+\left (2\,x^3\,{\mathrm {e}}^{2\,x}-6\,x^2\,{\mathrm {e}}^x\right )\,{\ln \left (x^2\right )}^2+x+{\mathrm {e}}^{2\,x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.54, size = 70, normalized size = 2.41 \begin {gather*} 9 x^{4} \log {\left (x^{2} \right )}^{4} + x + \left (- 6 x^{5} \log {\left (x^{2} \right )}^{4} - 6 x^{2} \log {\left (x^{2} \right )}^{2}\right ) e^{x} + \left (x^{6} \log {\left (x^{2} \right )}^{4} + 2 x^{3} \log {\left (x^{2} \right )}^{2} + 1\right ) e^{2 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________