Optimal. Leaf size=24 \[ 30+x^2+\frac {5}{x+\log (4)+2 \left (x-\frac {\log (x)}{e^4}\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.73, antiderivative size = 28, normalized size of antiderivative = 1.17, number of steps used = 4, number of rules used = 3, integrand size = 130, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.023, Rules used = {6688, 6742, 6686} \begin {gather*} x^2+\frac {5 e^4}{3 e^4 x-2 \log (x)+e^4 \log (4)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6686
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {10 e^4+e^8 x \left (-15+18 x^3+12 x^2 \log (4)+2 x \log ^2(4)\right )-8 e^4 x^2 (3 x+\log (4)) \log (x)+8 x^2 \log ^2(x)}{x \left (e^4 (3 x+\log (4))-2 \log (x)\right )^2} \, dx\\ &=\int \left (2 x-\frac {5 e^4 \left (-2+3 e^4 x\right )}{x \left (3 e^4 x+e^4 \log (4)-2 \log (x)\right )^2}\right ) \, dx\\ &=x^2-\left (5 e^4\right ) \int \frac {-2+3 e^4 x}{x \left (3 e^4 x+e^4 \log (4)-2 \log (x)\right )^2} \, dx\\ &=x^2+\frac {5 e^4}{3 e^4 x+e^4 \log (4)-2 \log (x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.34, size = 26, normalized size = 1.08 \begin {gather*} x^2+\frac {5 e^4}{e^4 (3 x+\log (4))-2 \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 46, normalized size = 1.92 \begin {gather*} \frac {2 \, x^{2} e^{4} \log \relax (2) - 2 \, x^{2} \log \relax (x) + {\left (3 \, x^{3} + 5\right )} e^{4}}{3 \, x e^{4} + 2 \, e^{4} \log \relax (2) - 2 \, \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.29, size = 47, normalized size = 1.96 \begin {gather*} \frac {3 \, x^{3} e^{4} + 2 \, x^{2} e^{4} \log \relax (2) - 2 \, x^{2} \log \relax (x) + 5 \, e^{4}}{3 \, x e^{4} + 2 \, e^{4} \log \relax (2) - 2 \, \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 27, normalized size = 1.12
method | result | size |
risch | \(x^{2}+\frac {5 \,{\mathrm e}^{4}}{2 \,{\mathrm e}^{4} \ln \relax (2)+3 x \,{\mathrm e}^{4}-2 \ln \relax (x )}\) | \(27\) |
norman | \(\frac {-2 x^{2} \ln \relax (x )+3 x^{3} {\mathrm e}^{4}+2 x^{2} {\mathrm e}^{4} \ln \relax (2)+5 \,{\mathrm e}^{4}}{2 \,{\mathrm e}^{4} \ln \relax (2)+3 x \,{\mathrm e}^{4}-2 \ln \relax (x )}\) | \(48\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.85, size = 47, normalized size = 1.96 \begin {gather*} \frac {3 \, x^{3} e^{4} + 2 \, x^{2} e^{4} \log \relax (2) - 2 \, x^{2} \log \relax (x) + 5 \, e^{4}}{3 \, x e^{4} + 2 \, e^{4} \log \relax (2) - 2 \, \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {10\,{\mathrm {e}}^4-{\mathrm {e}}^8\,\left (15\,x-18\,x^4\right )-\ln \relax (x)\,\left (24\,{\mathrm {e}}^4\,x^3+16\,{\mathrm {e}}^4\,\ln \relax (2)\,x^2\right )+8\,x^2\,{\ln \relax (x)}^2+24\,x^3\,{\mathrm {e}}^8\,\ln \relax (2)+8\,x^2\,{\mathrm {e}}^8\,{\ln \relax (2)}^2}{4\,x\,{\ln \relax (x)}^2+9\,x^3\,{\mathrm {e}}^8-\ln \relax (x)\,\left (12\,{\mathrm {e}}^4\,x^2+8\,{\mathrm {e}}^4\,\ln \relax (2)\,x\right )+4\,x\,{\mathrm {e}}^8\,{\ln \relax (2)}^2+12\,x^2\,{\mathrm {e}}^8\,\ln \relax (2)} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 27, normalized size = 1.12 \begin {gather*} x^{2} - \frac {5 e^{4}}{- 3 x e^{4} + 2 \log {\relax (x )} - 2 e^{4} \log {\relax (2 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________