Optimal. Leaf size=22 \[ e^4 \left (2+\frac {12 x^2}{13 \left (x-x^2\right )}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.00, antiderivative size = 14, normalized size of antiderivative = 0.64, number of steps used = 4, number of rules used = 3, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.176, Rules used = {12, 27, 32} \begin {gather*} \frac {12 e^4}{13 (1-x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 32
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\left (12 e^4\right ) \int \frac {1}{13-26 x+13 x^2} \, dx\\ &=\left (12 e^4\right ) \int \frac {1}{13 (-1+x)^2} \, dx\\ &=\frac {1}{13} \left (12 e^4\right ) \int \frac {1}{(-1+x)^2} \, dx\\ &=\frac {12 e^4}{13 (1-x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 12, normalized size = 0.55 \begin {gather*} -\frac {12 e^4}{13 (-1+x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 9, normalized size = 0.41 \begin {gather*} -\frac {12 \, e^{4}}{13 \, {\left (x - 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.27, size = 9, normalized size = 0.41 \begin {gather*} -\frac {12 \, e^{4}}{13 \, {\left (x - 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.42, size = 10, normalized size = 0.45
method | result | size |
gosper | \(-\frac {12 \,{\mathrm e}^{4}}{13 \left (x -1\right )}\) | \(10\) |
default | \(-\frac {12 \,{\mathrm e}^{4}}{13 \left (x -1\right )}\) | \(10\) |
norman | \(-\frac {12 \,{\mathrm e}^{4}}{13 \left (x -1\right )}\) | \(10\) |
risch | \(-\frac {12 \,{\mathrm e}^{4}}{13 \left (x -1\right )}\) | \(10\) |
meijerg | \(\frac {12 \,{\mathrm e}^{4} x}{13 \left (1-x \right )}\) | \(13\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 9, normalized size = 0.41 \begin {gather*} -\frac {12 \, e^{4}}{13 \, {\left (x - 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.04, size = 11, normalized size = 0.50 \begin {gather*} -\frac {12\,{\mathrm {e}}^4}{13\,\left (x-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.08, size = 10, normalized size = 0.45 \begin {gather*} - \frac {12 e^{4}}{13 x - 13} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________