Optimal. Leaf size=24 \[ \frac {x}{4+\frac {5}{4} x^2 (2+x) \log ^2\left (\frac {10}{x}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 37.04, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {64+\left (80 x^2+40 x^3\right ) \log \left (\frac {10}{x}\right )+\left (-40 x^2-40 x^3\right ) \log ^2\left (\frac {10}{x}\right )}{256+\left (320 x^2+160 x^3\right ) \log ^2\left (\frac {10}{x}\right )+\left (100 x^4+100 x^5+25 x^6\right ) \log ^4\left (\frac {10}{x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {8 \left (8+5 x^2 (2+x) \log \left (\frac {10}{x}\right )-5 x^2 (1+x) \log ^2\left (\frac {10}{x}\right )\right )}{\left (16+5 x^2 (2+x) \log ^2\left (\frac {10}{x}\right )\right )^2} \, dx\\ &=8 \int \frac {8+5 x^2 (2+x) \log \left (\frac {10}{x}\right )-5 x^2 (1+x) \log ^2\left (\frac {10}{x}\right )}{\left (16+5 x^2 (2+x) \log ^2\left (\frac {10}{x}\right )\right )^2} \, dx\\ &=8 \int \left (\frac {32+24 x+20 x^2 \log \left (\frac {10}{x}\right )+20 x^3 \log \left (\frac {10}{x}\right )+5 x^4 \log \left (\frac {10}{x}\right )}{(2+x) \left (16+10 x^2 \log ^2\left (\frac {10}{x}\right )+5 x^3 \log ^2\left (\frac {10}{x}\right )\right )^2}+\frac {-1-x}{(2+x) \left (16+10 x^2 \log ^2\left (\frac {10}{x}\right )+5 x^3 \log ^2\left (\frac {10}{x}\right )\right )}\right ) \, dx\\ &=8 \int \frac {32+24 x+20 x^2 \log \left (\frac {10}{x}\right )+20 x^3 \log \left (\frac {10}{x}\right )+5 x^4 \log \left (\frac {10}{x}\right )}{(2+x) \left (16+10 x^2 \log ^2\left (\frac {10}{x}\right )+5 x^3 \log ^2\left (\frac {10}{x}\right )\right )^2} \, dx+8 \int \frac {-1-x}{(2+x) \left (16+10 x^2 \log ^2\left (\frac {10}{x}\right )+5 x^3 \log ^2\left (\frac {10}{x}\right )\right )} \, dx\\ &=8 \int \frac {8 (4+3 x)+5 x^2 (2+x)^2 \log \left (\frac {10}{x}\right )}{(2+x) \left (16+5 x^2 (2+x) \log ^2\left (\frac {10}{x}\right )\right )^2} \, dx+8 \int \frac {-1-x}{(2+x) \left (16+5 x^2 (2+x) \log ^2\left (\frac {10}{x}\right )\right )} \, dx\\ &=8 \int \left (\frac {32}{(2+x) \left (16+10 x^2 \log ^2\left (\frac {10}{x}\right )+5 x^3 \log ^2\left (\frac {10}{x}\right )\right )^2}+\frac {24 x}{(2+x) \left (16+10 x^2 \log ^2\left (\frac {10}{x}\right )+5 x^3 \log ^2\left (\frac {10}{x}\right )\right )^2}+\frac {20 x^2 \log \left (\frac {10}{x}\right )}{(2+x) \left (16+10 x^2 \log ^2\left (\frac {10}{x}\right )+5 x^3 \log ^2\left (\frac {10}{x}\right )\right )^2}+\frac {20 x^3 \log \left (\frac {10}{x}\right )}{(2+x) \left (16+10 x^2 \log ^2\left (\frac {10}{x}\right )+5 x^3 \log ^2\left (\frac {10}{x}\right )\right )^2}+\frac {5 x^4 \log \left (\frac {10}{x}\right )}{(2+x) \left (16+10 x^2 \log ^2\left (\frac {10}{x}\right )+5 x^3 \log ^2\left (\frac {10}{x}\right )\right )^2}\right ) \, dx+8 \int \left (-\frac {1}{16+10 x^2 \log ^2\left (\frac {10}{x}\right )+5 x^3 \log ^2\left (\frac {10}{x}\right )}+\frac {1}{(2+x) \left (16+10 x^2 \log ^2\left (\frac {10}{x}\right )+5 x^3 \log ^2\left (\frac {10}{x}\right )\right )}\right ) \, dx\\ &=-\left (8 \int \frac {1}{16+10 x^2 \log ^2\left (\frac {10}{x}\right )+5 x^3 \log ^2\left (\frac {10}{x}\right )} \, dx\right )+8 \int \frac {1}{(2+x) \left (16+10 x^2 \log ^2\left (\frac {10}{x}\right )+5 x^3 \log ^2\left (\frac {10}{x}\right )\right )} \, dx+40 \int \frac {x^4 \log \left (\frac {10}{x}\right )}{(2+x) \left (16+10 x^2 \log ^2\left (\frac {10}{x}\right )+5 x^3 \log ^2\left (\frac {10}{x}\right )\right )^2} \, dx+160 \int \frac {x^2 \log \left (\frac {10}{x}\right )}{(2+x) \left (16+10 x^2 \log ^2\left (\frac {10}{x}\right )+5 x^3 \log ^2\left (\frac {10}{x}\right )\right )^2} \, dx+160 \int \frac {x^3 \log \left (\frac {10}{x}\right )}{(2+x) \left (16+10 x^2 \log ^2\left (\frac {10}{x}\right )+5 x^3 \log ^2\left (\frac {10}{x}\right )\right )^2} \, dx+192 \int \frac {x}{(2+x) \left (16+10 x^2 \log ^2\left (\frac {10}{x}\right )+5 x^3 \log ^2\left (\frac {10}{x}\right )\right )^2} \, dx+256 \int \frac {1}{(2+x) \left (16+10 x^2 \log ^2\left (\frac {10}{x}\right )+5 x^3 \log ^2\left (\frac {10}{x}\right )\right )^2} \, dx\\ &=-\left (8 \int \frac {1}{16+5 x^2 (2+x) \log ^2\left (\frac {10}{x}\right )} \, dx\right )+8 \int \frac {1}{(2+x) \left (16+5 x^2 (2+x) \log ^2\left (\frac {10}{x}\right )\right )} \, dx+40 \int \frac {x^4 \log \left (\frac {10}{x}\right )}{(2+x) \left (16+5 x^2 (2+x) \log ^2\left (\frac {10}{x}\right )\right )^2} \, dx+160 \int \frac {x^2 \log \left (\frac {10}{x}\right )}{(2+x) \left (16+5 x^2 (2+x) \log ^2\left (\frac {10}{x}\right )\right )^2} \, dx+160 \int \frac {x^3 \log \left (\frac {10}{x}\right )}{(2+x) \left (16+5 x^2 (2+x) \log ^2\left (\frac {10}{x}\right )\right )^2} \, dx+192 \int \frac {x}{(2+x) \left (16+5 x^2 (2+x) \log ^2\left (\frac {10}{x}\right )\right )^2} \, dx+256 \int \frac {1}{(2+x) \left (16+5 x^2 (2+x) \log ^2\left (\frac {10}{x}\right )\right )^2} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.47, size = 23, normalized size = 0.96 \begin {gather*} \frac {8 x}{32+10 x^2 (2+x) \log ^2\left (\frac {10}{x}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 26, normalized size = 1.08 \begin {gather*} \frac {4 \, x}{5 \, {\left (x^{3} + 2 \, x^{2}\right )} \log \left (\frac {10}{x}\right )^{2} + 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.69, size = 36, normalized size = 1.50 \begin {gather*} \frac {4}{{\left (5 \, \log \left (\frac {10}{x}\right )^{2} + \frac {10 \, \log \left (\frac {10}{x}\right )^{2}}{x} + \frac {16}{x^{3}}\right )} x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 34, normalized size = 1.42
method | result | size |
risch | \(\frac {4 x}{5 \ln \left (\frac {10}{x}\right )^{2} x^{3}+10 x^{2} \ln \left (\frac {10}{x}\right )^{2}+16}\) | \(34\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 1.01, size = 86, normalized size = 3.58 \begin {gather*} \frac {4 \, x}{5 \, {\left (\log \relax (5)^{2} + 2 \, \log \relax (5) \log \relax (2) + \log \relax (2)^{2}\right )} x^{3} + 10 \, {\left (\log \relax (5)^{2} + 2 \, \log \relax (5) \log \relax (2) + \log \relax (2)^{2}\right )} x^{2} + 5 \, {\left (x^{3} + 2 \, x^{2}\right )} \log \relax (x)^{2} - 10 \, {\left (x^{3} {\left (\log \relax (5) + \log \relax (2)\right )} + 2 \, x^{2} {\left (\log \relax (5) + \log \relax (2)\right )}\right )} \log \relax (x) + 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {\left (-40\,x^3-40\,x^2\right )\,{\ln \left (\frac {10}{x}\right )}^2+\left (40\,x^3+80\,x^2\right )\,\ln \left (\frac {10}{x}\right )+64}{\left (25\,x^6+100\,x^5+100\,x^4\right )\,{\ln \left (\frac {10}{x}\right )}^4+\left (160\,x^3+320\,x^2\right )\,{\ln \left (\frac {10}{x}\right )}^2+256} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.25, size = 20, normalized size = 0.83 \begin {gather*} \frac {4 x}{\left (5 x^{3} + 10 x^{2}\right ) \log {\left (\frac {10}{x} \right )}^{2} + 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________