Optimal. Leaf size=20 \[ \frac {9 \log \left (5 x^4 \left (e^x+\frac {3 x}{2}\right )\right )}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.81, antiderivative size = 22, normalized size of antiderivative = 1.10, number of steps used = 15, number of rules used = 4, integrand size = 59, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.068, Rules used = {6742, 14, 43, 2551} \begin {gather*} \frac {9 \log \left (\frac {5}{2} x^4 \left (3 x+2 e^x\right )\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 43
Rule 2551
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {27 (-1+x)}{x \left (2 e^x+3 x\right )}+\frac {9 \left (4+x-\log \left (\frac {5}{2} x^4 \left (2 e^x+3 x\right )\right )\right )}{x^2}\right ) \, dx\\ &=9 \int \frac {4+x-\log \left (\frac {5}{2} x^4 \left (2 e^x+3 x\right )\right )}{x^2} \, dx-27 \int \frac {-1+x}{x \left (2 e^x+3 x\right )} \, dx\\ &=9 \int \left (\frac {4+x}{x^2}-\frac {\log \left (\frac {5}{2} x^4 \left (2 e^x+3 x\right )\right )}{x^2}\right ) \, dx-27 \int \left (\frac {1}{2 e^x+3 x}-\frac {1}{x \left (2 e^x+3 x\right )}\right ) \, dx\\ &=9 \int \frac {4+x}{x^2} \, dx-9 \int \frac {\log \left (\frac {5}{2} x^4 \left (2 e^x+3 x\right )\right )}{x^2} \, dx-27 \int \frac {1}{2 e^x+3 x} \, dx+27 \int \frac {1}{x \left (2 e^x+3 x\right )} \, dx\\ &=\frac {9 \log \left (\frac {5}{2} x^4 \left (2 e^x+3 x\right )\right )}{x}+9 \int \left (\frac {4}{x^2}+\frac {1}{x}\right ) \, dx-9 \int \frac {15 x+2 e^x (4+x)}{x^2 \left (2 e^x+3 x\right )} \, dx-27 \int \frac {1}{2 e^x+3 x} \, dx+27 \int \frac {1}{x \left (2 e^x+3 x\right )} \, dx\\ &=-\frac {36}{x}+9 \log (x)+\frac {9 \log \left (\frac {5}{2} x^4 \left (2 e^x+3 x\right )\right )}{x}-9 \int \left (\frac {4+x}{x^2}-\frac {3 (-1+x)}{x \left (2 e^x+3 x\right )}\right ) \, dx-27 \int \frac {1}{2 e^x+3 x} \, dx+27 \int \frac {1}{x \left (2 e^x+3 x\right )} \, dx\\ &=-\frac {36}{x}+9 \log (x)+\frac {9 \log \left (\frac {5}{2} x^4 \left (2 e^x+3 x\right )\right )}{x}-9 \int \frac {4+x}{x^2} \, dx-27 \int \frac {1}{2 e^x+3 x} \, dx+27 \int \frac {1}{x \left (2 e^x+3 x\right )} \, dx+27 \int \frac {-1+x}{x \left (2 e^x+3 x\right )} \, dx\\ &=-\frac {36}{x}+9 \log (x)+\frac {9 \log \left (\frac {5}{2} x^4 \left (2 e^x+3 x\right )\right )}{x}-9 \int \left (\frac {4}{x^2}+\frac {1}{x}\right ) \, dx-27 \int \frac {1}{2 e^x+3 x} \, dx+27 \int \frac {1}{x \left (2 e^x+3 x\right )} \, dx+27 \int \left (\frac {1}{2 e^x+3 x}-\frac {1}{x \left (2 e^x+3 x\right )}\right ) \, dx\\ &=\frac {9 \log \left (\frac {5}{2} x^4 \left (2 e^x+3 x\right )\right )}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.20, size = 22, normalized size = 1.10 \begin {gather*} \frac {9 \log \left (\frac {5}{2} x^4 \left (2 e^x+3 x\right )\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.66, size = 19, normalized size = 0.95 \begin {gather*} \frac {9 \, \log \left (\frac {15}{2} \, x^{5} + 5 \, x^{4} e^{x}\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 19, normalized size = 0.95 \begin {gather*} \frac {9 \, \log \left (\frac {15}{2} \, x^{5} + 5 \, x^{4} e^{x}\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.13, size = 20, normalized size = 1.00
method | result | size |
norman | \(\frac {9 \ln \left (5 \,{\mathrm e}^{x} x^{4}+\frac {15 x^{5}}{2}\right )}{x}\) | \(20\) |
risch | \(\frac {9 \ln \left (\frac {2 \,{\mathrm e}^{x}}{3}+x \right )}{x}-\frac {9 \left (i \pi \mathrm {csgn}\left (i x^{4} \left (\frac {2 \,{\mathrm e}^{x}}{3}+x \right )\right )^{3}-i \pi \,\mathrm {csgn}\left (i x^{4}\right ) \mathrm {csgn}\left (i x^{4} \left (\frac {2 \,{\mathrm e}^{x}}{3}+x \right )\right )^{2}+i \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{3}\right )^{2}-i \pi \,\mathrm {csgn}\left (i \left (\frac {2 \,{\mathrm e}^{x}}{3}+x \right )\right ) \mathrm {csgn}\left (i x^{4} \left (\frac {2 \,{\mathrm e}^{x}}{3}+x \right )\right )^{2}-2 i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+i \pi \mathrm {csgn}\left (i x^{4}\right )^{3}-i \pi \,\mathrm {csgn}\left (i x^{3}\right ) \mathrm {csgn}\left (i x^{4}\right )^{2}+i \pi \mathrm {csgn}\left (i x^{2}\right )^{3}+i \pi \mathrm {csgn}\left (i x^{3}\right )^{3}+i \pi \,\mathrm {csgn}\left (i x^{4}\right ) \mathrm {csgn}\left (i \left (\frac {2 \,{\mathrm e}^{x}}{3}+x \right )\right ) \mathrm {csgn}\left (i x^{4} \left (\frac {2 \,{\mathrm e}^{x}}{3}+x \right )\right )+i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{3}\right ) \mathrm {csgn}\left (i x^{4}\right )+i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x^{3}\right )-i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{4}\right )^{2}-i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x^{3}\right )^{2}+2 \ln \relax (2)-2 \ln \relax (5)-8 \ln \relax (x )\right )}{2 x}\) | \(337\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.84, size = 25, normalized size = 1.25 \begin {gather*} \frac {9 \, {\left (\log \relax (5) - \log \relax (2) + \log \left (3 \, x + 2 \, e^{x}\right ) + 4 \, \log \relax (x)\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.64, size = 19, normalized size = 0.95 \begin {gather*} \frac {9\,\ln \left (5\,x^4\,{\mathrm {e}}^x+\frac {15\,x^5}{2}\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.36, size = 19, normalized size = 0.95 \begin {gather*} \frac {9 \log {\left (\frac {15 x^{5}}{2} + 5 x^{4} e^{x} \right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________