Optimal. Leaf size=28 \[ \frac {25}{16} x^2 (10-2 x-\log (4))^2 \left (x+4 \log ^2(5)\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.08, antiderivative size = 158, normalized size of antiderivative = 5.64, number of steps used = 10, number of rules used = 2, integrand size = 125, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.016, Rules used = {6, 12} \begin {gather*} \frac {25 x^6}{4}-\frac {125 x^5}{2}+50 x^5 \log ^2(5)+\frac {25}{4} x^5 \log (4)+100 x^4 \log ^4(5)+50 x^4 \log (4) \log ^2(5)-500 x^4 \log ^2(5)+\frac {25}{16} x^4 \left (100+\log ^2(4)\right )-\frac {125}{4} x^4 \log (4)+100 x^3 \log (4) \log ^4(5)-1000 x^3 \log ^4(5)+\frac {25}{2} x^3 \left (100+\log ^2(4)\right ) \log ^2(5)-250 x^3 \log (4) \log ^2(5)-500 x^2 \log (4) \log ^4(5)+25 x^2 \left (100+\log ^2(4)\right ) \log ^4(5) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {1}{4} \left (-1250 x^4+150 x^5+\left (-500 x^3+125 x^4\right ) \log (4)+x^3 \left (2500+25 \log ^2(4)\right )+\left (15000 x^2-8000 x^3+1000 x^4+\left (-3000 x^2+800 x^3\right ) \log (4)+150 x^2 \log ^2(4)\right ) \log ^2(5)+\left (20000 x-12000 x^2+1600 x^3+\left (-4000 x+1200 x^2\right ) \log (4)+200 x \log ^2(4)\right ) \log ^4(5)\right ) \, dx\\ &=\frac {1}{4} \int \left (-1250 x^4+150 x^5+\left (-500 x^3+125 x^4\right ) \log (4)+x^3 \left (2500+25 \log ^2(4)\right )+\left (15000 x^2-8000 x^3+1000 x^4+\left (-3000 x^2+800 x^3\right ) \log (4)+150 x^2 \log ^2(4)\right ) \log ^2(5)+\left (20000 x-12000 x^2+1600 x^3+\left (-4000 x+1200 x^2\right ) \log (4)+200 x \log ^2(4)\right ) \log ^4(5)\right ) \, dx\\ &=-\frac {125 x^5}{2}+\frac {25 x^6}{4}+\frac {25}{16} x^4 \left (100+\log ^2(4)\right )+\frac {1}{4} \log (4) \int \left (-500 x^3+125 x^4\right ) \, dx+\frac {1}{4} \log ^2(5) \int \left (15000 x^2-8000 x^3+1000 x^4+\left (-3000 x^2+800 x^3\right ) \log (4)+150 x^2 \log ^2(4)\right ) \, dx+\frac {1}{4} \log ^4(5) \int \left (20000 x-12000 x^2+1600 x^3+\left (-4000 x+1200 x^2\right ) \log (4)+200 x \log ^2(4)\right ) \, dx\\ &=-\frac {125 x^5}{2}+\frac {25 x^6}{4}-\frac {125}{4} x^4 \log (4)+\frac {25}{4} x^5 \log (4)+\frac {25}{16} x^4 \left (100+\log ^2(4)\right )+\frac {1}{4} \log ^2(5) \int \left (-8000 x^3+1000 x^4+\left (-3000 x^2+800 x^3\right ) \log (4)+x^2 \left (15000+150 \log ^2(4)\right )\right ) \, dx+\frac {1}{4} \log ^4(5) \int \left (-12000 x^2+1600 x^3+\left (-4000 x+1200 x^2\right ) \log (4)+x \left (20000+200 \log ^2(4)\right )\right ) \, dx\\ &=-\frac {125 x^5}{2}+\frac {25 x^6}{4}-\frac {125}{4} x^4 \log (4)+\frac {25}{4} x^5 \log (4)+\frac {25}{16} x^4 \left (100+\log ^2(4)\right )-500 x^4 \log ^2(5)+50 x^5 \log ^2(5)+\frac {25}{2} x^3 \left (100+\log ^2(4)\right ) \log ^2(5)-1000 x^3 \log ^4(5)+100 x^4 \log ^4(5)+25 x^2 \left (100+\log ^2(4)\right ) \log ^4(5)+\frac {1}{4} \left (\log (4) \log ^2(5)\right ) \int \left (-3000 x^2+800 x^3\right ) \, dx+\frac {1}{4} \left (\log (4) \log ^4(5)\right ) \int \left (-4000 x+1200 x^2\right ) \, dx\\ &=-\frac {125 x^5}{2}+\frac {25 x^6}{4}-\frac {125}{4} x^4 \log (4)+\frac {25}{4} x^5 \log (4)+\frac {25}{16} x^4 \left (100+\log ^2(4)\right )-500 x^4 \log ^2(5)+50 x^5 \log ^2(5)-250 x^3 \log (4) \log ^2(5)+50 x^4 \log (4) \log ^2(5)+\frac {25}{2} x^3 \left (100+\log ^2(4)\right ) \log ^2(5)-1000 x^3 \log ^4(5)+100 x^4 \log ^4(5)-500 x^2 \log (4) \log ^4(5)+100 x^3 \log (4) \log ^4(5)+25 x^2 \left (100+\log ^2(4)\right ) \log ^4(5)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 26, normalized size = 0.93 \begin {gather*} \frac {25}{16} x^2 (-10+2 x+\log (4))^2 \left (x+4 \log ^2(5)\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.65, size = 120, normalized size = 4.29 \begin {gather*} \frac {25}{4} \, x^{6} + \frac {25}{4} \, x^{4} \log \relax (2)^{2} - \frac {125}{2} \, x^{5} + 100 \, {\left (x^{4} + x^{2} \log \relax (2)^{2} - 10 \, x^{3} + 25 \, x^{2} + 2 \, {\left (x^{3} - 5 \, x^{2}\right )} \log \relax (2)\right )} \log \relax (5)^{4} + \frac {625}{4} \, x^{4} + 50 \, {\left (x^{5} + x^{3} \log \relax (2)^{2} - 10 \, x^{4} + 25 \, x^{3} + 2 \, {\left (x^{4} - 5 \, x^{3}\right )} \log \relax (2)\right )} \log \relax (5)^{2} + \frac {25}{2} \, {\left (x^{5} - 5 \, x^{4}\right )} \log \relax (2) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.14, size = 120, normalized size = 4.29 \begin {gather*} \frac {25}{4} \, x^{6} + \frac {25}{4} \, x^{4} \log \relax (2)^{2} - \frac {125}{2} \, x^{5} + 100 \, {\left (x^{4} + x^{2} \log \relax (2)^{2} - 10 \, x^{3} + 25 \, x^{2} + 2 \, {\left (x^{3} - 5 \, x^{2}\right )} \log \relax (2)\right )} \log \relax (5)^{4} + \frac {625}{4} \, x^{4} + 50 \, {\left (x^{5} + x^{3} \log \relax (2)^{2} - 10 \, x^{4} + 25 \, x^{3} + 2 \, {\left (x^{4} - 5 \, x^{3}\right )} \log \relax (2)\right )} \log \relax (5)^{2} + \frac {25}{2} \, {\left (x^{5} - 5 \, x^{4}\right )} \log \relax (2) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.04, size = 93, normalized size = 3.32
method | result | size |
gosper | \(\frac {25 \left (4 \ln \relax (5)^{2}+x \right ) \left (4 \ln \relax (2)^{2} \ln \relax (5)^{2}+8 x \ln \relax (2) \ln \relax (5)^{2}+4 x^{2} \ln \relax (5)^{2}-40 \ln \relax (2) \ln \relax (5)^{2}-40 x \ln \relax (5)^{2}+x \ln \relax (2)^{2}+2 x^{2} \ln \relax (2)+x^{3}+100 \ln \relax (5)^{2}-10 x \ln \relax (2)-10 x^{2}+25 x \right ) x^{2}}{4}\) | \(93\) |
norman | \(\left (50 \ln \relax (5)^{2}+\frac {25 \ln \relax (2)}{2}-\frac {125}{2}\right ) x^{5}+\left (100 \ln \relax (5)^{4} \ln \relax (2)^{2}-1000 \ln \relax (5)^{4} \ln \relax (2)+2500 \ln \relax (5)^{4}\right ) x^{2}+\left (200 \ln \relax (5)^{4} \ln \relax (2)-1000 \ln \relax (5)^{4}+50 \ln \relax (2)^{2} \ln \relax (5)^{2}-500 \ln \relax (2) \ln \relax (5)^{2}+1250 \ln \relax (5)^{2}\right ) x^{3}+\left (100 \ln \relax (5)^{4}+100 \ln \relax (2) \ln \relax (5)^{2}-500 \ln \relax (5)^{2}+\frac {25 \ln \relax (2)^{2}}{4}-\frac {125 \ln \relax (2)}{2}+\frac {625}{4}\right ) x^{4}+\frac {25 x^{6}}{4}\) | \(131\) |
default | \(\frac {\ln \relax (5)^{4} \left (400 x^{2} \ln \relax (2)^{2}+2 \ln \relax (2) \left (400 x^{3}-2000 x^{2}\right )+400 x^{4}-4000 x^{3}+10000 x^{2}\right )}{4}+\frac {\ln \relax (5)^{2} \left (200 x^{3} \ln \relax (2)^{2}+2 \ln \relax (2) \left (200 x^{4}-1000 x^{3}\right )+200 x^{5}-2000 x^{4}+5000 x^{3}\right )}{4}+\frac {25 x^{4} \ln \relax (2)^{2}}{4}+\frac {\ln \relax (2) \left (25 x^{5}-125 x^{4}\right )}{2}+\frac {25 x^{6}}{4}-\frac {125 x^{5}}{2}+\frac {625 x^{4}}{4}\) | \(133\) |
risch | \(100 x^{4} \ln \relax (5)^{4}+200 \ln \relax (5)^{4} x^{3} \ln \relax (2)-1000 x^{3} \ln \relax (5)^{4}+100 \ln \relax (5)^{4} \ln \relax (2)^{2} x^{2}-1000 \ln \relax (5)^{4} \ln \relax (2) x^{2}+2500 \ln \relax (5)^{4} x^{2}+50 x^{5} \ln \relax (5)^{2}+100 \ln \relax (5)^{2} x^{4} \ln \relax (2)-500 x^{4} \ln \relax (5)^{2}+50 \ln \relax (5)^{2} \ln \relax (2)^{2} x^{3}-500 \ln \relax (5)^{2} \ln \relax (2) x^{3}+1250 x^{3} \ln \relax (5)^{2}+\frac {25 x^{4} \ln \relax (2)^{2}}{4}+\frac {25 x^{5} \ln \relax (2)}{2}-\frac {125 x^{4} \ln \relax (2)}{2}+\frac {25 x^{6}}{4}-\frac {125 x^{5}}{2}+\frac {625 x^{4}}{4}\) | \(164\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.68, size = 120, normalized size = 4.29 \begin {gather*} \frac {25}{4} \, x^{6} + \frac {25}{4} \, x^{4} \log \relax (2)^{2} - \frac {125}{2} \, x^{5} + 100 \, {\left (x^{4} + x^{2} \log \relax (2)^{2} - 10 \, x^{3} + 25 \, x^{2} + 2 \, {\left (x^{3} - 5 \, x^{2}\right )} \log \relax (2)\right )} \log \relax (5)^{4} + \frac {625}{4} \, x^{4} + 50 \, {\left (x^{5} + x^{3} \log \relax (2)^{2} - 10 \, x^{4} + 25 \, x^{3} + 2 \, {\left (x^{4} - 5 \, x^{3}\right )} \log \relax (2)\right )} \log \relax (5)^{2} + \frac {25}{2} \, {\left (x^{5} - 5 \, x^{4}\right )} \log \relax (2) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.50, size = 96, normalized size = 3.43 \begin {gather*} \frac {25\,x^6}{4}+\left (\frac {25\,\ln \relax (2)}{2}+50\,{\ln \relax (5)}^2-\frac {125}{2}\right )\,x^5+\left (100\,\ln \relax (2)\,{\ln \relax (5)}^2-\frac {125\,\ln \relax (2)}{2}+\frac {25\,{\ln \relax (2)}^2}{4}-500\,{\ln \relax (5)}^2+100\,{\ln \relax (5)}^4+\frac {625}{4}\right )\,x^4+50\,{\ln \relax (5)}^2\,\left (\ln \relax (2)-5\right )\,\left (\ln \relax (2)+4\,{\ln \relax (5)}^2-5\right )\,x^3+100\,{\ln \relax (5)}^4\,{\left (\ln \relax (2)-5\right )}^2\,x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.10, size = 153, normalized size = 5.46 \begin {gather*} \frac {25 x^{6}}{4} + x^{5} \left (- \frac {125}{2} + \frac {25 \log {\relax (2 )}}{2} + 50 \log {\relax (5 )}^{2}\right ) + x^{4} \left (- 500 \log {\relax (5 )}^{2} - \frac {125 \log {\relax (2 )}}{2} + \frac {25 \log {\relax (2 )}^{2}}{4} + \frac {625}{4} + 100 \log {\relax (2 )} \log {\relax (5 )}^{2} + 100 \log {\relax (5 )}^{4}\right ) + x^{3} \left (- 1000 \log {\relax (5 )}^{4} - 500 \log {\relax (2 )} \log {\relax (5 )}^{2} + 50 \log {\relax (2 )}^{2} \log {\relax (5 )}^{2} + 200 \log {\relax (2 )} \log {\relax (5 )}^{4} + 1250 \log {\relax (5 )}^{2}\right ) + x^{2} \left (- 1000 \log {\relax (2 )} \log {\relax (5 )}^{4} + 100 \log {\relax (2 )}^{2} \log {\relax (5 )}^{4} + 2500 \log {\relax (5 )}^{4}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________