Optimal. Leaf size=28 \[ \frac {-1-e^x-5 (1+x)}{x \left (x+\log \left (\frac {3+x}{5}\right )\right )} \]
________________________________________________________________________________________
Rubi [F] time = 4.37, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {42 x+32 x^2+5 x^3+e^x \left (7 x-x^2-x^3\right )+\left (18+6 x+e^x \left (3-2 x-x^2\right )\right ) \log \left (\frac {3+x}{5}\right )}{3 x^4+x^5+\left (6 x^3+2 x^4\right ) \log \left (\frac {3+x}{5}\right )+\left (3 x^2+x^3\right ) \log ^2\left (\frac {3+x}{5}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-x \left (-42-32 x-5 x^2+e^x \left (-7+x+x^2\right )\right )-\left (-6+e^x (-1+x)\right ) (3+x) \log \left (\frac {3+x}{5}\right )}{x^2 (3+x) \left (x+\log \left (\frac {3+x}{5}\right )\right )^2} \, dx\\ &=\int \left (\frac {32}{(3+x) \left (x+\log \left (\frac {3+x}{5}\right )\right )^2}+\frac {42}{x (3+x) \left (x+\log \left (\frac {3+x}{5}\right )\right )^2}+\frac {5 x}{(3+x) \left (x+\log \left (\frac {3+x}{5}\right )\right )^2}+\frac {6 \log \left (\frac {3}{5}+\frac {x}{5}\right )}{x^2 \left (x+\log \left (\frac {3+x}{5}\right )\right )^2}-\frac {e^x \left (-7 x+x^2+x^3-3 \log \left (\frac {3+x}{5}\right )+2 x \log \left (\frac {3+x}{5}\right )+x^2 \log \left (\frac {3+x}{5}\right )\right )}{x^2 (3+x) \left (x+\log \left (\frac {3+x}{5}\right )\right )^2}\right ) \, dx\\ &=5 \int \frac {x}{(3+x) \left (x+\log \left (\frac {3+x}{5}\right )\right )^2} \, dx+6 \int \frac {\log \left (\frac {3}{5}+\frac {x}{5}\right )}{x^2 \left (x+\log \left (\frac {3+x}{5}\right )\right )^2} \, dx+32 \int \frac {1}{(3+x) \left (x+\log \left (\frac {3+x}{5}\right )\right )^2} \, dx+42 \int \frac {1}{x (3+x) \left (x+\log \left (\frac {3+x}{5}\right )\right )^2} \, dx-\int \frac {e^x \left (-7 x+x^2+x^3-3 \log \left (\frac {3+x}{5}\right )+2 x \log \left (\frac {3+x}{5}\right )+x^2 \log \left (\frac {3+x}{5}\right )\right )}{x^2 (3+x) \left (x+\log \left (\frac {3+x}{5}\right )\right )^2} \, dx\\ &=5 \int \left (\frac {1}{\left (x+\log \left (\frac {3+x}{5}\right )\right )^2}-\frac {3}{(3+x) \left (x+\log \left (\frac {3+x}{5}\right )\right )^2}\right ) \, dx+6 \int \frac {\log \left (\frac {3}{5}+\frac {x}{5}\right )}{x^2 \left (x+\log \left (\frac {3+x}{5}\right )\right )^2} \, dx+32 \int \frac {1}{(3+x) \left (x+\log \left (\frac {3+x}{5}\right )\right )^2} \, dx+42 \int \left (\frac {1}{3 x \left (x+\log \left (\frac {3+x}{5}\right )\right )^2}-\frac {1}{3 (3+x) \left (x+\log \left (\frac {3+x}{5}\right )\right )^2}\right ) \, dx-\int \frac {e^x \left (x \left (-7+x+x^2\right )+\left (-3+2 x+x^2\right ) \log \left (\frac {3+x}{5}\right )\right )}{x^2 (3+x) \left (x+\log \left (\frac {3+x}{5}\right )\right )^2} \, dx\\ &=5 \int \frac {1}{\left (x+\log \left (\frac {3+x}{5}\right )\right )^2} \, dx+6 \int \frac {\log \left (\frac {3}{5}+\frac {x}{5}\right )}{x^2 \left (x+\log \left (\frac {3+x}{5}\right )\right )^2} \, dx+14 \int \frac {1}{x \left (x+\log \left (\frac {3+x}{5}\right )\right )^2} \, dx-14 \int \frac {1}{(3+x) \left (x+\log \left (\frac {3+x}{5}\right )\right )^2} \, dx-15 \int \frac {1}{(3+x) \left (x+\log \left (\frac {3+x}{5}\right )\right )^2} \, dx+32 \int \frac {1}{(3+x) \left (x+\log \left (\frac {3+x}{5}\right )\right )^2} \, dx-\int \left (\frac {e^x (-4-x)}{x (3+x) \left (x+\log \left (\frac {3+x}{5}\right )\right )^2}+\frac {e^x (-1+x)}{x^2 \left (x+\log \left (\frac {3+x}{5}\right )\right )}\right ) \, dx\\ &=5 \int \frac {1}{\left (x+\log \left (\frac {3+x}{5}\right )\right )^2} \, dx+6 \int \frac {\log \left (\frac {3}{5}+\frac {x}{5}\right )}{x^2 \left (x+\log \left (\frac {3+x}{5}\right )\right )^2} \, dx+14 \int \frac {1}{x \left (x+\log \left (\frac {3+x}{5}\right )\right )^2} \, dx-14 \int \frac {1}{(3+x) \left (x+\log \left (\frac {3+x}{5}\right )\right )^2} \, dx-15 \int \frac {1}{(3+x) \left (x+\log \left (\frac {3+x}{5}\right )\right )^2} \, dx+32 \int \frac {1}{(3+x) \left (x+\log \left (\frac {3+x}{5}\right )\right )^2} \, dx-\int \frac {e^x (-4-x)}{x (3+x) \left (x+\log \left (\frac {3+x}{5}\right )\right )^2} \, dx-\int \frac {e^x (-1+x)}{x^2 \left (x+\log \left (\frac {3+x}{5}\right )\right )} \, dx\\ &=5 \int \frac {1}{\left (x+\log \left (\frac {3+x}{5}\right )\right )^2} \, dx+6 \int \frac {\log \left (\frac {3}{5}+\frac {x}{5}\right )}{x^2 \left (x+\log \left (\frac {3+x}{5}\right )\right )^2} \, dx+14 \int \frac {1}{x \left (x+\log \left (\frac {3+x}{5}\right )\right )^2} \, dx-14 \int \frac {1}{(3+x) \left (x+\log \left (\frac {3+x}{5}\right )\right )^2} \, dx-15 \int \frac {1}{(3+x) \left (x+\log \left (\frac {3+x}{5}\right )\right )^2} \, dx+32 \int \frac {1}{(3+x) \left (x+\log \left (\frac {3+x}{5}\right )\right )^2} \, dx-\int \left (-\frac {4 e^x}{3 x \left (x+\log \left (\frac {3+x}{5}\right )\right )^2}+\frac {e^x}{3 (3+x) \left (x+\log \left (\frac {3+x}{5}\right )\right )^2}\right ) \, dx-\int \left (-\frac {e^x}{x^2 \left (x+\log \left (\frac {3+x}{5}\right )\right )}+\frac {e^x}{x \left (x+\log \left (\frac {3+x}{5}\right )\right )}\right ) \, dx\\ &=-\left (\frac {1}{3} \int \frac {e^x}{(3+x) \left (x+\log \left (\frac {3+x}{5}\right )\right )^2} \, dx\right )+\frac {4}{3} \int \frac {e^x}{x \left (x+\log \left (\frac {3+x}{5}\right )\right )^2} \, dx+5 \int \frac {1}{\left (x+\log \left (\frac {3+x}{5}\right )\right )^2} \, dx+6 \int \frac {\log \left (\frac {3}{5}+\frac {x}{5}\right )}{x^2 \left (x+\log \left (\frac {3+x}{5}\right )\right )^2} \, dx+14 \int \frac {1}{x \left (x+\log \left (\frac {3+x}{5}\right )\right )^2} \, dx-14 \int \frac {1}{(3+x) \left (x+\log \left (\frac {3+x}{5}\right )\right )^2} \, dx-15 \int \frac {1}{(3+x) \left (x+\log \left (\frac {3+x}{5}\right )\right )^2} \, dx+32 \int \frac {1}{(3+x) \left (x+\log \left (\frac {3+x}{5}\right )\right )^2} \, dx+\int \frac {e^x}{x^2 \left (x+\log \left (\frac {3+x}{5}\right )\right )} \, dx-\int \frac {e^x}{x \left (x+\log \left (\frac {3+x}{5}\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.66, size = 25, normalized size = 0.89 \begin {gather*} -\frac {6+e^x+5 x}{x \left (x+\log \left (\frac {3+x}{5}\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 23, normalized size = 0.82 \begin {gather*} -\frac {5 \, x + e^{x} + 6}{x^{2} + x \log \left (\frac {1}{5} \, x + \frac {3}{5}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.36, size = 23, normalized size = 0.82 \begin {gather*} -\frac {5 \, x + e^{x} + 6}{x^{2} + x \log \left (\frac {1}{5} \, x + \frac {3}{5}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.22, size = 23, normalized size = 0.82
method | result | size |
risch | \(-\frac {5 x +{\mathrm e}^{x}+6}{x \left (\ln \left (\frac {3}{5}+\frac {x}{5}\right )+x \right )}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.67, size = 26, normalized size = 0.93 \begin {gather*} -\frac {5 \, x + e^{x} + 6}{x^{2} - x \log \relax (5) + x \log \left (x + 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.89, size = 22, normalized size = 0.79 \begin {gather*} -\frac {5\,x+{\mathrm {e}}^x+6}{x\,\left (x+\ln \left (\frac {x}{5}+\frac {3}{5}\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.37, size = 36, normalized size = 1.29 \begin {gather*} \frac {- 5 x - 6}{x^{2} + x \log {\left (\frac {x}{5} + \frac {3}{5} \right )}} - \frac {e^{x}}{x^{2} + x \log {\left (\frac {x}{5} + \frac {3}{5} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________