Optimal. Leaf size=32 \[ -e^{e^x+x}+\frac {(-2+x)^4 x^4}{25 \log ^2\left (5 e^{-3+x}\right )} \]
________________________________________________________________________________________
Rubi [B] time = 1.92, antiderivative size = 103, normalized size of antiderivative = 3.22, number of steps used = 85, number of rules used = 11, integrand size = 100, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.110, Rules used = {12, 6688, 2282, 2176, 2194, 6742, 2168, 2159, 2158, 2157, 29} \begin {gather*} \frac {x^8}{25 \log ^2\left (5 e^{x-3}\right )}-\frac {8 x^7}{25 \log ^2\left (5 e^{x-3}\right )}+\frac {24 x^6}{25 \log ^2\left (5 e^{x-3}\right )}-\frac {32 x^5}{25 \log ^2\left (5 e^{x-3}\right )}+\frac {16 x^4}{25 \log ^2\left (5 e^{x-3}\right )}+e^{e^x}-e^{e^x} \left (e^x+1\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 29
Rule 2157
Rule 2158
Rule 2159
Rule 2168
Rule 2176
Rule 2194
Rule 2282
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{25} \int \frac {-32 x^4+64 x^5-48 x^6+16 x^7-2 x^8+\left (64 x^3-160 x^4+144 x^5-56 x^6+8 x^7\right ) \log \left (5 e^{-3+x}\right )+e^{e^x+x} \left (-25-25 e^x\right ) \log ^3\left (5 e^{-3+x}\right )}{\log ^3\left (5 e^{-3+x}\right )} \, dx\\ &=\frac {1}{25} \int \left (-25 e^{e^x+x} \left (1+e^x\right )-\frac {2 (-2+x)^4 x^4}{\log ^3\left (5 e^{-3+x}\right )}+\frac {8 (-2+x)^3 (-1+x) x^3}{\log ^2\left (5 e^{-3+x}\right )}\right ) \, dx\\ &=-\left (\frac {2}{25} \int \frac {(-2+x)^4 x^4}{\log ^3\left (5 e^{-3+x}\right )} \, dx\right )+\frac {8}{25} \int \frac {(-2+x)^3 (-1+x) x^3}{\log ^2\left (5 e^{-3+x}\right )} \, dx-\int e^{e^x+x} \left (1+e^x\right ) \, dx\\ &=-\left (\frac {2}{25} \int \left (\frac {16 x^4}{\log ^3\left (5 e^{-3+x}\right )}-\frac {32 x^5}{\log ^3\left (5 e^{-3+x}\right )}+\frac {24 x^6}{\log ^3\left (5 e^{-3+x}\right )}-\frac {8 x^7}{\log ^3\left (5 e^{-3+x}\right )}+\frac {x^8}{\log ^3\left (5 e^{-3+x}\right )}\right ) \, dx\right )+\frac {8}{25} \int \left (\frac {8 x^3}{\log ^2\left (5 e^{-3+x}\right )}-\frac {20 x^4}{\log ^2\left (5 e^{-3+x}\right )}+\frac {18 x^5}{\log ^2\left (5 e^{-3+x}\right )}-\frac {7 x^6}{\log ^2\left (5 e^{-3+x}\right )}+\frac {x^7}{\log ^2\left (5 e^{-3+x}\right )}\right ) \, dx-\operatorname {Subst}\left (\int e^x (1+x) \, dx,x,e^x\right )\\ &=-e^{e^x} \left (1+e^x\right )-\frac {2}{25} \int \frac {x^8}{\log ^3\left (5 e^{-3+x}\right )} \, dx+\frac {8}{25} \int \frac {x^7}{\log ^2\left (5 e^{-3+x}\right )} \, dx+\frac {16}{25} \int \frac {x^7}{\log ^3\left (5 e^{-3+x}\right )} \, dx-\frac {32}{25} \int \frac {x^4}{\log ^3\left (5 e^{-3+x}\right )} \, dx-\frac {48}{25} \int \frac {x^6}{\log ^3\left (5 e^{-3+x}\right )} \, dx-\frac {56}{25} \int \frac {x^6}{\log ^2\left (5 e^{-3+x}\right )} \, dx+\frac {64}{25} \int \frac {x^5}{\log ^3\left (5 e^{-3+x}\right )} \, dx+\frac {64}{25} \int \frac {x^3}{\log ^2\left (5 e^{-3+x}\right )} \, dx+\frac {144}{25} \int \frac {x^5}{\log ^2\left (5 e^{-3+x}\right )} \, dx-\frac {32}{5} \int \frac {x^4}{\log ^2\left (5 e^{-3+x}\right )} \, dx+\operatorname {Subst}\left (\int e^x \, dx,x,e^x\right )\\ &=e^{e^x}-e^{e^x} \left (1+e^x\right )+\frac {16 x^4}{25 \log ^2\left (5 e^{-3+x}\right )}-\frac {32 x^5}{25 \log ^2\left (5 e^{-3+x}\right )}+\frac {24 x^6}{25 \log ^2\left (5 e^{-3+x}\right )}-\frac {8 x^7}{25 \log ^2\left (5 e^{-3+x}\right )}+\frac {x^8}{25 \log ^2\left (5 e^{-3+x}\right )}-\frac {64 x^3}{25 \log \left (5 e^{-3+x}\right )}+\frac {32 x^4}{5 \log \left (5 e^{-3+x}\right )}-\frac {144 x^5}{25 \log \left (5 e^{-3+x}\right )}+\frac {56 x^6}{25 \log \left (5 e^{-3+x}\right )}-\frac {8 x^7}{25 \log \left (5 e^{-3+x}\right )}-\frac {8}{25} \int \frac {x^7}{\log ^2\left (5 e^{-3+x}\right )} \, dx+\frac {56}{25} \int \frac {x^6}{\log ^2\left (5 e^{-3+x}\right )} \, dx+\frac {56}{25} \int \frac {x^6}{\log \left (5 e^{-3+x}\right )} \, dx-\frac {64}{25} \int \frac {x^3}{\log ^2\left (5 e^{-3+x}\right )} \, dx-\frac {144}{25} \int \frac {x^5}{\log ^2\left (5 e^{-3+x}\right )} \, dx+\frac {32}{5} \int \frac {x^4}{\log ^2\left (5 e^{-3+x}\right )} \, dx+\frac {192}{25} \int \frac {x^2}{\log \left (5 e^{-3+x}\right )} \, dx-\frac {336}{25} \int \frac {x^5}{\log \left (5 e^{-3+x}\right )} \, dx-\frac {128}{5} \int \frac {x^3}{\log \left (5 e^{-3+x}\right )} \, dx+\frac {144}{5} \int \frac {x^4}{\log \left (5 e^{-3+x}\right )} \, dx\\ &=e^{e^x}-e^{e^x} \left (1+e^x\right )+\frac {96 x^2}{25}-\frac {128 x^3}{15}+\frac {36 x^4}{5}-\frac {336 x^5}{125}+\frac {28 x^6}{75}+\frac {16 x^4}{25 \log ^2\left (5 e^{-3+x}\right )}-\frac {32 x^5}{25 \log ^2\left (5 e^{-3+x}\right )}+\frac {24 x^6}{25 \log ^2\left (5 e^{-3+x}\right )}-\frac {8 x^7}{25 \log ^2\left (5 e^{-3+x}\right )}+\frac {x^8}{25 \log ^2\left (5 e^{-3+x}\right )}-\frac {56}{25} \int \frac {x^6}{\log \left (5 e^{-3+x}\right )} \, dx-\frac {192}{25} \int \frac {x^2}{\log \left (5 e^{-3+x}\right )} \, dx+\frac {336}{25} \int \frac {x^5}{\log \left (5 e^{-3+x}\right )} \, dx+\frac {128}{5} \int \frac {x^3}{\log \left (5 e^{-3+x}\right )} \, dx-\frac {144}{5} \int \frac {x^4}{\log \left (5 e^{-3+x}\right )} \, dx-\frac {1}{25} \left (56 \left (-x+\log \left (5 e^{-3+x}\right )\right )\right ) \int \frac {x^5}{\log \left (5 e^{-3+x}\right )} \, dx-\frac {1}{25} \left (192 \left (-x+\log \left (5 e^{-3+x}\right )\right )\right ) \int \frac {x}{\log \left (5 e^{-3+x}\right )} \, dx+\frac {1}{25} \left (336 \left (-x+\log \left (5 e^{-3+x}\right )\right )\right ) \int \frac {x^4}{\log \left (5 e^{-3+x}\right )} \, dx+\frac {1}{5} \left (128 \left (-x+\log \left (5 e^{-3+x}\right )\right )\right ) \int \frac {x^2}{\log \left (5 e^{-3+x}\right )} \, dx-\frac {1}{5} \left (144 \left (-x+\log \left (5 e^{-3+x}\right )\right )\right ) \int \frac {x^3}{\log \left (5 e^{-3+x}\right )} \, dx\\ &=e^{e^x}-e^{e^x} \left (1+e^x\right )+\frac {192}{25} x \left (x-\log \left (5 e^{-3+x}\right )\right )-\frac {64}{5} x^2 \left (x-\log \left (5 e^{-3+x}\right )\right )+\frac {48}{5} x^3 \left (x-\log \left (5 e^{-3+x}\right )\right )-\frac {84}{25} x^4 \left (x-\log \left (5 e^{-3+x}\right )\right )+\frac {56}{125} x^5 \left (x-\log \left (5 e^{-3+x}\right )\right )+\frac {16 x^4}{25 \log ^2\left (5 e^{-3+x}\right )}-\frac {32 x^5}{25 \log ^2\left (5 e^{-3+x}\right )}+\frac {24 x^6}{25 \log ^2\left (5 e^{-3+x}\right )}-\frac {8 x^7}{25 \log ^2\left (5 e^{-3+x}\right )}+\frac {x^8}{25 \log ^2\left (5 e^{-3+x}\right )}+\frac {1}{25} \left (56 \left (-x+\log \left (5 e^{-3+x}\right )\right )\right ) \int \frac {x^5}{\log \left (5 e^{-3+x}\right )} \, dx+\frac {1}{25} \left (192 \left (-x+\log \left (5 e^{-3+x}\right )\right )\right ) \int \frac {x}{\log \left (5 e^{-3+x}\right )} \, dx-\frac {1}{25} \left (336 \left (-x+\log \left (5 e^{-3+x}\right )\right )\right ) \int \frac {x^4}{\log \left (5 e^{-3+x}\right )} \, dx-\frac {1}{5} \left (128 \left (-x+\log \left (5 e^{-3+x}\right )\right )\right ) \int \frac {x^2}{\log \left (5 e^{-3+x}\right )} \, dx+\frac {1}{5} \left (144 \left (-x+\log \left (5 e^{-3+x}\right )\right )\right ) \int \frac {x^3}{\log \left (5 e^{-3+x}\right )} \, dx+\frac {1}{25} \left (56 \left (-x+\log \left (5 e^{-3+x}\right )\right )^2\right ) \int \frac {x^4}{\log \left (5 e^{-3+x}\right )} \, dx+\frac {1}{25} \left (192 \left (-x+\log \left (5 e^{-3+x}\right )\right )^2\right ) \int \frac {1}{\log \left (5 e^{-3+x}\right )} \, dx-\frac {1}{25} \left (336 \left (-x+\log \left (5 e^{-3+x}\right )\right )^2\right ) \int \frac {x^3}{\log \left (5 e^{-3+x}\right )} \, dx-\frac {1}{5} \left (128 \left (-x+\log \left (5 e^{-3+x}\right )\right )^2\right ) \int \frac {x}{\log \left (5 e^{-3+x}\right )} \, dx+\frac {1}{5} \left (144 \left (-x+\log \left (5 e^{-3+x}\right )\right )^2\right ) \int \frac {x^2}{\log \left (5 e^{-3+x}\right )} \, dx\\ &=e^{e^x}-e^{e^x} \left (1+e^x\right )-\frac {128}{5} x \left (x-\log \left (5 e^{-3+x}\right )\right )^2+\frac {72}{5} x^2 \left (x-\log \left (5 e^{-3+x}\right )\right )^2-\frac {112}{25} x^3 \left (x-\log \left (5 e^{-3+x}\right )\right )^2+\frac {14}{25} x^4 \left (x-\log \left (5 e^{-3+x}\right )\right )^2+\frac {16 x^4}{25 \log ^2\left (5 e^{-3+x}\right )}-\frac {32 x^5}{25 \log ^2\left (5 e^{-3+x}\right )}+\frac {24 x^6}{25 \log ^2\left (5 e^{-3+x}\right )}-\frac {8 x^7}{25 \log ^2\left (5 e^{-3+x}\right )}+\frac {x^8}{25 \log ^2\left (5 e^{-3+x}\right )}-\frac {1}{25} \left (56 \left (-x+\log \left (5 e^{-3+x}\right )\right )^2\right ) \int \frac {x^4}{\log \left (5 e^{-3+x}\right )} \, dx-\frac {1}{25} \left (192 \left (-x+\log \left (5 e^{-3+x}\right )\right )^2\right ) \int \frac {1}{\log \left (5 e^{-3+x}\right )} \, dx+\frac {1}{25} \left (192 \left (-x+\log \left (5 e^{-3+x}\right )\right )^2\right ) \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log \left (5 e^{-3+x}\right )\right )+\frac {1}{25} \left (336 \left (-x+\log \left (5 e^{-3+x}\right )\right )^2\right ) \int \frac {x^3}{\log \left (5 e^{-3+x}\right )} \, dx+\frac {1}{5} \left (128 \left (-x+\log \left (5 e^{-3+x}\right )\right )^2\right ) \int \frac {x}{\log \left (5 e^{-3+x}\right )} \, dx-\frac {1}{5} \left (144 \left (-x+\log \left (5 e^{-3+x}\right )\right )^2\right ) \int \frac {x^2}{\log \left (5 e^{-3+x}\right )} \, dx-\frac {1}{25} \left (56 \left (-x+\log \left (5 e^{-3+x}\right )\right )^3\right ) \int \frac {x^3}{\log \left (5 e^{-3+x}\right )} \, dx+\frac {1}{25} \left (336 \left (-x+\log \left (5 e^{-3+x}\right )\right )^3\right ) \int \frac {x^2}{\log \left (5 e^{-3+x}\right )} \, dx+\frac {1}{5} \left (128 \left (-x+\log \left (5 e^{-3+x}\right )\right )^3\right ) \int \frac {1}{\log \left (5 e^{-3+x}\right )} \, dx-\frac {1}{5} \left (144 \left (-x+\log \left (5 e^{-3+x}\right )\right )^3\right ) \int \frac {x}{\log \left (5 e^{-3+x}\right )} \, dx\\ &=e^{e^x}-e^{e^x} \left (1+e^x\right )+\frac {144}{5} x \left (x-\log \left (5 e^{-3+x}\right )\right )^3-\frac {168}{25} x^2 \left (x-\log \left (5 e^{-3+x}\right )\right )^3+\frac {56}{75} x^3 \left (x-\log \left (5 e^{-3+x}\right )\right )^3+\frac {16 x^4}{25 \log ^2\left (5 e^{-3+x}\right )}-\frac {32 x^5}{25 \log ^2\left (5 e^{-3+x}\right )}+\frac {24 x^6}{25 \log ^2\left (5 e^{-3+x}\right )}-\frac {8 x^7}{25 \log ^2\left (5 e^{-3+x}\right )}+\frac {x^8}{25 \log ^2\left (5 e^{-3+x}\right )}+\frac {192}{25} \left (x-\log \left (5 e^{-3+x}\right )\right )^2 \log \left (\log \left (5 e^{-3+x}\right )\right )-\frac {1}{25} \left (192 \left (-x+\log \left (5 e^{-3+x}\right )\right )^2\right ) \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log \left (5 e^{-3+x}\right )\right )+\frac {1}{25} \left (56 \left (-x+\log \left (5 e^{-3+x}\right )\right )^3\right ) \int \frac {x^3}{\log \left (5 e^{-3+x}\right )} \, dx-\frac {1}{25} \left (336 \left (-x+\log \left (5 e^{-3+x}\right )\right )^3\right ) \int \frac {x^2}{\log \left (5 e^{-3+x}\right )} \, dx-\frac {1}{5} \left (128 \left (-x+\log \left (5 e^{-3+x}\right )\right )^3\right ) \int \frac {1}{\log \left (5 e^{-3+x}\right )} \, dx+\frac {1}{5} \left (128 \left (-x+\log \left (5 e^{-3+x}\right )\right )^3\right ) \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log \left (5 e^{-3+x}\right )\right )+\frac {1}{5} \left (144 \left (-x+\log \left (5 e^{-3+x}\right )\right )^3\right ) \int \frac {x}{\log \left (5 e^{-3+x}\right )} \, dx+\frac {1}{25} \left (56 \left (-x+\log \left (5 e^{-3+x}\right )\right )^4\right ) \int \frac {x^2}{\log \left (5 e^{-3+x}\right )} \, dx-\frac {1}{25} \left (336 \left (-x+\log \left (5 e^{-3+x}\right )\right )^4\right ) \int \frac {x}{\log \left (5 e^{-3+x}\right )} \, dx+\frac {1}{5} \left (144 \left (-x+\log \left (5 e^{-3+x}\right )\right )^4\right ) \int \frac {1}{\log \left (5 e^{-3+x}\right )} \, dx\\ &=e^{e^x}-e^{e^x} \left (1+e^x\right )-\frac {336}{25} x \left (x-\log \left (5 e^{-3+x}\right )\right )^4+\frac {28}{25} x^2 \left (x-\log \left (5 e^{-3+x}\right )\right )^4+\frac {16 x^4}{25 \log ^2\left (5 e^{-3+x}\right )}-\frac {32 x^5}{25 \log ^2\left (5 e^{-3+x}\right )}+\frac {24 x^6}{25 \log ^2\left (5 e^{-3+x}\right )}-\frac {8 x^7}{25 \log ^2\left (5 e^{-3+x}\right )}+\frac {x^8}{25 \log ^2\left (5 e^{-3+x}\right )}-\frac {128}{5} \left (x-\log \left (5 e^{-3+x}\right )\right )^3 \log \left (\log \left (5 e^{-3+x}\right )\right )-\frac {1}{5} \left (128 \left (-x+\log \left (5 e^{-3+x}\right )\right )^3\right ) \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log \left (5 e^{-3+x}\right )\right )-\frac {1}{25} \left (56 \left (-x+\log \left (5 e^{-3+x}\right )\right )^4\right ) \int \frac {x^2}{\log \left (5 e^{-3+x}\right )} \, dx+\frac {1}{25} \left (336 \left (-x+\log \left (5 e^{-3+x}\right )\right )^4\right ) \int \frac {x}{\log \left (5 e^{-3+x}\right )} \, dx-\frac {1}{5} \left (144 \left (-x+\log \left (5 e^{-3+x}\right )\right )^4\right ) \int \frac {1}{\log \left (5 e^{-3+x}\right )} \, dx+\frac {1}{5} \left (144 \left (-x+\log \left (5 e^{-3+x}\right )\right )^4\right ) \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log \left (5 e^{-3+x}\right )\right )-\frac {1}{25} \left (56 \left (-x+\log \left (5 e^{-3+x}\right )\right )^5\right ) \int \frac {x}{\log \left (5 e^{-3+x}\right )} \, dx+\frac {1}{25} \left (336 \left (-x+\log \left (5 e^{-3+x}\right )\right )^5\right ) \int \frac {1}{\log \left (5 e^{-3+x}\right )} \, dx\\ &=e^{e^x}-e^{e^x} \left (1+e^x\right )+\frac {56}{25} x \left (x-\log \left (5 e^{-3+x}\right )\right )^5+\frac {16 x^4}{25 \log ^2\left (5 e^{-3+x}\right )}-\frac {32 x^5}{25 \log ^2\left (5 e^{-3+x}\right )}+\frac {24 x^6}{25 \log ^2\left (5 e^{-3+x}\right )}-\frac {8 x^7}{25 \log ^2\left (5 e^{-3+x}\right )}+\frac {x^8}{25 \log ^2\left (5 e^{-3+x}\right )}+\frac {144}{5} \left (x-\log \left (5 e^{-3+x}\right )\right )^4 \log \left (\log \left (5 e^{-3+x}\right )\right )-\frac {1}{5} \left (144 \left (-x+\log \left (5 e^{-3+x}\right )\right )^4\right ) \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log \left (5 e^{-3+x}\right )\right )+\frac {1}{25} \left (56 \left (-x+\log \left (5 e^{-3+x}\right )\right )^5\right ) \int \frac {x}{\log \left (5 e^{-3+x}\right )} \, dx-\frac {1}{25} \left (336 \left (-x+\log \left (5 e^{-3+x}\right )\right )^5\right ) \int \frac {1}{\log \left (5 e^{-3+x}\right )} \, dx+\frac {1}{25} \left (336 \left (-x+\log \left (5 e^{-3+x}\right )\right )^5\right ) \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log \left (5 e^{-3+x}\right )\right )+\frac {1}{25} \left (56 \left (-x+\log \left (5 e^{-3+x}\right )\right )^6\right ) \int \frac {1}{\log \left (5 e^{-3+x}\right )} \, dx\\ &=e^{e^x}-e^{e^x} \left (1+e^x\right )+\frac {16 x^4}{25 \log ^2\left (5 e^{-3+x}\right )}-\frac {32 x^5}{25 \log ^2\left (5 e^{-3+x}\right )}+\frac {24 x^6}{25 \log ^2\left (5 e^{-3+x}\right )}-\frac {8 x^7}{25 \log ^2\left (5 e^{-3+x}\right )}+\frac {x^8}{25 \log ^2\left (5 e^{-3+x}\right )}-\frac {336}{25} \left (x-\log \left (5 e^{-3+x}\right )\right )^5 \log \left (\log \left (5 e^{-3+x}\right )\right )-\frac {1}{25} \left (336 \left (-x+\log \left (5 e^{-3+x}\right )\right )^5\right ) \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log \left (5 e^{-3+x}\right )\right )-\frac {1}{25} \left (56 \left (-x+\log \left (5 e^{-3+x}\right )\right )^6\right ) \int \frac {1}{\log \left (5 e^{-3+x}\right )} \, dx+\frac {1}{25} \left (56 \left (-x+\log \left (5 e^{-3+x}\right )\right )^6\right ) \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log \left (5 e^{-3+x}\right )\right )\\ &=e^{e^x}-e^{e^x} \left (1+e^x\right )+\frac {16 x^4}{25 \log ^2\left (5 e^{-3+x}\right )}-\frac {32 x^5}{25 \log ^2\left (5 e^{-3+x}\right )}+\frac {24 x^6}{25 \log ^2\left (5 e^{-3+x}\right )}-\frac {8 x^7}{25 \log ^2\left (5 e^{-3+x}\right )}+\frac {x^8}{25 \log ^2\left (5 e^{-3+x}\right )}+\frac {56}{25} \left (x-\log \left (5 e^{-3+x}\right )\right )^6 \log \left (\log \left (5 e^{-3+x}\right )\right )-\frac {1}{25} \left (56 \left (-x+\log \left (5 e^{-3+x}\right )\right )^6\right ) \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log \left (5 e^{-3+x}\right )\right )\\ &=e^{e^x}-e^{e^x} \left (1+e^x\right )+\frac {16 x^4}{25 \log ^2\left (5 e^{-3+x}\right )}-\frac {32 x^5}{25 \log ^2\left (5 e^{-3+x}\right )}+\frac {24 x^6}{25 \log ^2\left (5 e^{-3+x}\right )}-\frac {8 x^7}{25 \log ^2\left (5 e^{-3+x}\right )}+\frac {x^8}{25 \log ^2\left (5 e^{-3+x}\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.37, size = 198, normalized size = 6.19 \begin {gather*} \frac {(-2+x)^4 x^4-\left (25 e^{e^x+x}+(-2+x)^3 x^2 (-6+7 x)\right ) \log ^2\left (5 e^{-3+x}\right )+6 (-2+x)^2 x \left (4-12 x+7 x^2\right ) \log ^3\left (5 e^{-3+x}\right )-3 \left (16-128 x+240 x^2-160 x^3+35 x^4\right ) \log ^4\left (5 e^{-3+x}\right )+4 \left (-32+120 x-120 x^2+35 x^3\right ) \log ^5\left (5 e^{-3+x}\right )-15 \left (8-16 x+7 x^2\right ) \log ^6\left (5 e^{-3+x}\right )+6 (-8+7 x) \log ^7\left (5 e^{-3+x}\right )-7 \log ^8\left (5 e^{-3+x}\right )}{25 \log ^2\left (5 e^{-3+x}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.72, size = 193, normalized size = 6.03 \begin {gather*} \frac {x^{8} - 2 \, {\left (7 \, x - 60\right )} \log \relax (5)^{7} - 7 \, \log \relax (5)^{8} - 8 \, x^{7} - {\left (7 \, x^{2} - 198 \, x + 876\right )} \log \relax (5)^{6} + 24 \, x^{6} + 2 \, {\left (39 \, x^{2} - 579 \, x + 1772\right )} \log \relax (5)^{5} - 32 \, x^{5} - {\left (345 \, x^{2} - 3614 \, x + 8658\right )} \log \relax (5)^{4} + 16 \, x^{4} + 2 \, {\left (386 \, x^{2} - 3237 \, x + 6516\right )} \log \relax (5)^{3} - 3 \, {\left (307 \, x^{2} - 2214 \, x + 3924\right )} \log \relax (5)^{2} - 135 \, x^{2} - 25 \, {\left (x^{2} + 2 \, {\left (x - 3\right )} \log \relax (5) + \log \relax (5)^{2} - 6 \, x + 9\right )} e^{\left (x + e^{x}\right )} + 18 \, {\left (31 \, x^{2} - 201 \, x + 324\right )} \log \relax (5) + 810 \, x - 1215}{25 \, {\left (x^{2} + 2 \, {\left (x - 3\right )} \log \relax (5) + \log \relax (5)^{2} - 6 \, x + 9\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.21, size = 415, normalized size = 12.97 \begin {gather*} \frac {x^{8} e^{\left (2 \, x\right )} - 7 \, x^{2} e^{\left (2 \, x\right )} \log \relax (5)^{6} - 14 \, x e^{\left (2 \, x\right )} \log \relax (5)^{7} - 7 \, e^{\left (2 \, x\right )} \log \relax (5)^{8} - 8 \, x^{7} e^{\left (2 \, x\right )} + 78 \, x^{2} e^{\left (2 \, x\right )} \log \relax (5)^{5} + 198 \, x e^{\left (2 \, x\right )} \log \relax (5)^{6} + 120 \, e^{\left (2 \, x\right )} \log \relax (5)^{7} + 24 \, x^{6} e^{\left (2 \, x\right )} - 345 \, x^{2} e^{\left (2 \, x\right )} \log \relax (5)^{4} - 1158 \, x e^{\left (2 \, x\right )} \log \relax (5)^{5} - 876 \, e^{\left (2 \, x\right )} \log \relax (5)^{6} - 32 \, x^{5} e^{\left (2 \, x\right )} + 772 \, x^{2} e^{\left (2 \, x\right )} \log \relax (5)^{3} + 3614 \, x e^{\left (2 \, x\right )} \log \relax (5)^{4} + 3544 \, e^{\left (2 \, x\right )} \log \relax (5)^{5} + 16 \, x^{4} e^{\left (2 \, x\right )} - 921 \, x^{2} e^{\left (2 \, x\right )} \log \relax (5)^{2} - 6474 \, x e^{\left (2 \, x\right )} \log \relax (5)^{3} - 8658 \, e^{\left (2 \, x\right )} \log \relax (5)^{4} + 558 \, x^{2} e^{\left (2 \, x\right )} \log \relax (5) + 6642 \, x e^{\left (2 \, x\right )} \log \relax (5)^{2} + 13032 \, e^{\left (2 \, x\right )} \log \relax (5)^{3} - 135 \, x^{2} e^{\left (2 \, x\right )} - 25 \, x^{2} e^{\left (3 \, x + e^{x}\right )} - 3618 \, x e^{\left (2 \, x\right )} \log \relax (5) - 50 \, x e^{\left (3 \, x + e^{x}\right )} \log \relax (5) - 11772 \, e^{\left (2 \, x\right )} \log \relax (5)^{2} - 25 \, e^{\left (3 \, x + e^{x}\right )} \log \relax (5)^{2} + 810 \, x e^{\left (2 \, x\right )} + 150 \, x e^{\left (3 \, x + e^{x}\right )} + 5832 \, e^{\left (2 \, x\right )} \log \relax (5) + 150 \, e^{\left (3 \, x + e^{x}\right )} \log \relax (5) - 1215 \, e^{\left (2 \, x\right )} - 225 \, e^{\left (3 \, x + e^{x}\right )}}{25 \, {\left (x^{2} e^{\left (2 \, x\right )} + 2 \, x e^{\left (2 \, x\right )} \log \relax (5) + e^{\left (2 \, x\right )} \log \relax (5)^{2} - 6 \, x e^{\left (2 \, x\right )} - 6 \, e^{\left (2 \, x\right )} \log \relax (5) + 9 \, e^{\left (2 \, x\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.11, size = 51, normalized size = 1.59
method | result | size |
risch | \(-{\mathrm e}^{{\mathrm e}^{x}+x}-\frac {4 \left (x^{8}-8 x^{7}+24 x^{6}-32 x^{5}+16 x^{4}\right )}{25 \left (2 i \ln \relax (5)+2 i \ln \left ({\mathrm e}^{x}\right )-6 i\right )^{2}}\) | \(51\) |
default | \(\frac {42 x}{25}+\frac {x^{6}}{25}-\frac {2 x^{5}}{25}+\frac {3 x^{4}}{25}+\frac {4 x^{3}}{25}+\frac {13 x^{2}}{25}-{\mathrm e}^{x} {\mathrm e}^{{\mathrm e}^{x}}+\frac {108 \left (\ln \left (5 \,{\mathrm e}^{x -3}\right )-x +3\right )^{6}}{25 \ln \left (5 \,{\mathrm e}^{x -3}\right )^{2}}-\frac {16 \left (\ln \left (5 \,{\mathrm e}^{x -3}\right )-x +3\right )^{5}}{\ln \left (5 \,{\mathrm e}^{x -3}\right )^{2}}+\frac {886 \left (\ln \left (5 \,{\mathrm e}^{x -3}\right )-x +3\right )^{4}}{25 \ln \left (5 \,{\mathrm e}^{x -3}\right )^{2}}-\frac {48 \left (\ln \left (5 \,{\mathrm e}^{x -3}\right )-x +3\right )^{3}}{\ln \left (5 \,{\mathrm e}^{x -3}\right )^{2}}+\frac {972 \left (\ln \left (5 \,{\mathrm e}^{x -3}\right )-x +3\right )^{2}}{25 \ln \left (5 \,{\mathrm e}^{x -3}\right )^{2}}-\frac {432 \left (\ln \left (5 \,{\mathrm e}^{x -3}\right )-x +3\right )}{25 \ln \left (5 \,{\mathrm e}^{x -3}\right )^{2}}+\frac {\left (\ln \left (5 \,{\mathrm e}^{x -3}\right )-x +3\right )^{8}}{25 \ln \left (5 \,{\mathrm e}^{x -3}\right )^{2}}-\frac {16 \left (\ln \left (5 \,{\mathrm e}^{x -3}\right )-x +3\right )^{7}}{25 \ln \left (5 \,{\mathrm e}^{x -3}\right )^{2}}-\frac {1944 \left (\ln \left (5 \,{\mathrm e}^{x -3}\right )-x +3\right )}{25 \ln \left (5 \,{\mathrm e}^{x -3}\right )}-\frac {8 \left (\ln \left (5 \,{\mathrm e}^{x -3}\right )-x +3\right )^{7}}{25 \ln \left (5 \,{\mathrm e}^{x -3}\right )}+\frac {112 \left (\ln \left (5 \,{\mathrm e}^{x -3}\right )-x +3\right )^{6}}{25 \ln \left (5 \,{\mathrm e}^{x -3}\right )}-\frac {648 \left (\ln \left (5 \,{\mathrm e}^{x -3}\right )-x +3\right )^{5}}{25 \ln \left (5 \,{\mathrm e}^{x -3}\right )}+\frac {80 \left (\ln \left (5 \,{\mathrm e}^{x -3}\right )-x +3\right )^{4}}{\ln \left (5 \,{\mathrm e}^{x -3}\right )}-\frac {3544 \left (\ln \left (5 \,{\mathrm e}^{x -3}\right )-x +3\right )^{3}}{25 \ln \left (5 \,{\mathrm e}^{x -3}\right )}-\frac {2 x^{5} \left (\ln \left (5 \,{\mathrm e}^{x -3}\right )-x +3\right )}{25}+2 x \left (\ln \left (5 \,{\mathrm e}^{x -3}\right )-x +3\right )^{4}-\frac {156 x \left (\ln \left (5 \,{\mathrm e}^{x -3}\right )-x +3\right )^{3}}{25}+\frac {228 x \left (\ln \left (5 \,{\mathrm e}^{x -3}\right )-x +3\right )^{2}}{25}-\frac {158 x \left (\ln \left (5 \,{\mathrm e}^{x -3}\right )-x +3\right )}{25}-\frac {4 x^{3} \left (\ln \left (5 \,{\mathrm e}^{x -3}\right )-x +3\right )^{3}}{25}+\frac {x^{2} \left (\ln \left (5 \,{\mathrm e}^{x -3}\right )-x +3\right )^{4}}{5}-\frac {28 x^{2} \left (\ln \left (5 \,{\mathrm e}^{x -3}\right )-x +3\right )^{3}}{25}+\frac {54 x^{2} \left (\ln \left (5 \,{\mathrm e}^{x -3}\right )-x +3\right )^{2}}{25}-\frac {44 x^{2} \left (\ln \left (5 \,{\mathrm e}^{x -3}\right )-x +3\right )}{25}-\frac {2 x^{4} \left (\ln \left (5 \,{\mathrm e}^{x -3}\right )-x +3\right )}{25}+\frac {3 x^{4} \left (\ln \left (5 \,{\mathrm e}^{x -3}\right )-x +3\right )^{2}}{25}+\frac {144 \left (\ln \left (5 \,{\mathrm e}^{x -3}\right )-x +3\right )^{2}}{\ln \left (5 \,{\mathrm e}^{x -3}\right )}+\frac {12 x^{3} \left (\ln \left (5 \,{\mathrm e}^{x -3}\right )-x +3\right )^{2}}{25}-\frac {12 x^{3} \left (\ln \left (5 \,{\mathrm e}^{x -3}\right )-x +3\right )}{25}-\frac {6 x \left (\ln \left (5 \,{\mathrm e}^{x -3}\right )-x +3\right )^{5}}{25}+\frac {432}{25 \ln \left (5 \,{\mathrm e}^{x -3}\right )}+\frac {81}{25 \ln \left (5 \,{\mathrm e}^{x -3}\right )^{2}}\) | \(695\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.76, size = 1477, normalized size = 46.16 result too large to display
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.66, size = 586, normalized size = 18.31 result too large to display
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 1.96, size = 291, normalized size = 9.09 \begin {gather*} \frac {x^{6}}{25} + x^{5} \left (- \frac {2 \log {\relax (5 )}}{25} - \frac {2}{25}\right ) + x^{4} \left (- \frac {2 \log {\relax (5 )}}{25} + \frac {3}{25} + \frac {3 \log {\relax (5 )}^{2}}{25}\right ) + x^{3} \left (- \frac {12 \log {\relax (5 )}}{25} - \frac {4 \log {\relax (5 )}^{3}}{25} + \frac {4}{25} + \frac {12 \log {\relax (5 )}^{2}}{25}\right ) + x^{2} \left (- \frac {28 \log {\relax (5 )}^{3}}{25} - \frac {44 \log {\relax (5 )}}{25} + \frac {13}{25} + \frac {\log {\relax (5 )}^{4}}{5} + \frac {54 \log {\relax (5 )}^{2}}{25}\right ) + x \left (- \frac {156 \log {\relax (5 )}^{3}}{25} - \frac {158 \log {\relax (5 )}}{25} - \frac {6 \log {\relax (5 )}^{5}}{25} + \frac {42}{25} + 2 \log {\relax (5 )}^{4} + \frac {228 \log {\relax (5 )}^{2}}{25}\right ) - e^{x + e^{x}} + \frac {x \left (- 3544 \log {\relax (5 )}^{3} - 648 \log {\relax (5 )}^{5} - 1944 \log {\relax (5 )} - 8 \log {\relax (5 )}^{7} + 432 + 112 \log {\relax (5 )}^{6} + 3600 \log {\relax (5 )}^{2} + 2000 \log {\relax (5 )}^{4}\right ) - 8658 \log {\relax (5 )}^{4} - 11772 \log {\relax (5 )}^{2} - 876 \log {\relax (5 )}^{6} - 1215 - 7 \log {\relax (5 )}^{8} + 120 \log {\relax (5 )}^{7} + 5832 \log {\relax (5 )} + 3544 \log {\relax (5 )}^{5} + 13032 \log {\relax (5 )}^{3}}{25 x^{2} + x \left (-150 + 50 \log {\relax (5 )}\right ) - 150 \log {\relax (5 )} + 25 \log {\relax (5 )}^{2} + 225} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________