Optimal. Leaf size=31 \[ \frac {25}{x}-\frac {1}{3} \log \left (e^{-6 e^{-x+x \log (x)}+2 x} x\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.08, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-75-x-2 x^2+6 e^{-x+x \log (x)} x^2 \log (x)}{3 x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int \frac {-75-x-2 x^2+6 e^{-x+x \log (x)} x^2 \log (x)}{x^2} \, dx\\ &=\frac {1}{3} \int \left (\frac {-75-x-2 x^2}{x^2}+6 e^{-x} x^x \log (x)\right ) \, dx\\ &=\frac {1}{3} \int \frac {-75-x-2 x^2}{x^2} \, dx+2 \int e^{-x} x^x \log (x) \, dx\\ &=\frac {1}{3} \int \left (-2-\frac {75}{x^2}-\frac {1}{x}\right ) \, dx-2 \int \frac {\int e^{-x} x^x \, dx}{x} \, dx+(2 \log (x)) \int e^{-x} x^x \, dx\\ &=\frac {25}{x}-\frac {2 x}{3}-\frac {\log (x)}{3}-2 \int \frac {\int e^{-x} x^x \, dx}{x} \, dx+(2 \log (x)) \int e^{-x} x^x \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.20, size = 27, normalized size = 0.87 \begin {gather*} \frac {1}{3} \left (\frac {75}{x}-2 x+6 e^{-x} x^x-\log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 28, normalized size = 0.90 \begin {gather*} -\frac {2 \, x^{2} - 6 \, x e^{\left (x \log \relax (x) - x\right )} + x \log \relax (x) - 75}{3 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 28, normalized size = 0.90 \begin {gather*} -\frac {2 \, x^{2} - 6 \, x e^{\left (x \log \relax (x) - x\right )} + x \log \relax (x) - 75}{3 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 23, normalized size = 0.74
method | result | size |
risch | \(-\frac {2 x}{3}-\frac {\ln \relax (x )}{3}+\frac {25}{x}+2 x^{x} {\mathrm e}^{-x}\) | \(23\) |
default | \(-\frac {2 x}{3}-\frac {\ln \relax (x )}{3}+\frac {25}{x}+2 \,{\mathrm e}^{x \ln \relax (x )-x}\) | \(25\) |
norman | \(\frac {25-\frac {x \ln \relax (x )}{3}-\frac {2 x^{2}}{3}+2 x \,{\mathrm e}^{x \ln \relax (x )-x}}{x}\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 24, normalized size = 0.77 \begin {gather*} -\frac {2}{3} \, x + \frac {25}{x} + 2 \, e^{\left (x \log \relax (x) - x\right )} - \frac {1}{3} \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.54, size = 22, normalized size = 0.71 \begin {gather*} \frac {25}{x}-\frac {\ln \relax (x)}{3}-\frac {2\,x}{3}+2\,x^x\,{\mathrm {e}}^{-x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.27, size = 22, normalized size = 0.71 \begin {gather*} - \frac {2 x}{3} + 2 e^{x \log {\relax (x )} - x} - \frac {\log {\relax (x )}}{3} + \frac {25}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________