Optimal. Leaf size=26 \[ \left (1+\frac {2}{\log (x)}\right ) \left (1+x \left (x+x^2-\log (1+4 x)\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.00, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-2-8 x-2 x^2-10 x^3-8 x^4+\left (-4 x^2+22 x^3+24 x^4\right ) \log (x)+\left (-2 x^2+11 x^3+12 x^4\right ) \log ^2(x)+\left (2 x+8 x^2+\left (-2 x-8 x^2\right ) \log (x)+\left (-x-4 x^2\right ) \log ^2(x)\right ) \log (1+4 x)}{\left (x+4 x^2\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-2-8 x-2 x^2-10 x^3-8 x^4+\left (-4 x^2+22 x^3+24 x^4\right ) \log (x)+\left (-2 x^2+11 x^3+12 x^4\right ) \log ^2(x)+\left (2 x+8 x^2+\left (-2 x-8 x^2\right ) \log (x)+\left (-x-4 x^2\right ) \log ^2(x)\right ) \log (1+4 x)}{x (1+4 x) \log ^2(x)} \, dx\\ &=\int \left (\frac {x \left (-2+11 x+12 x^2\right )}{1+4 x}-\frac {8}{(1+4 x) \log ^2(x)}-\frac {2}{x (1+4 x) \log ^2(x)}-\frac {2 x}{(1+4 x) \log ^2(x)}-\frac {10 x^2}{(1+4 x) \log ^2(x)}-\frac {8 x^3}{(1+4 x) \log ^2(x)}+\frac {2 x \left (-2+11 x+12 x^2\right )}{(1+4 x) \log (x)}-\frac {\left (-2+2 \log (x)+\log ^2(x)\right ) \log (1+4 x)}{\log ^2(x)}\right ) \, dx\\ &=-\left (2 \int \frac {1}{x (1+4 x) \log ^2(x)} \, dx\right )-2 \int \frac {x}{(1+4 x) \log ^2(x)} \, dx+2 \int \frac {x \left (-2+11 x+12 x^2\right )}{(1+4 x) \log (x)} \, dx-8 \int \frac {1}{(1+4 x) \log ^2(x)} \, dx-8 \int \frac {x^3}{(1+4 x) \log ^2(x)} \, dx-10 \int \frac {x^2}{(1+4 x) \log ^2(x)} \, dx+\int \frac {x \left (-2+11 x+12 x^2\right )}{1+4 x} \, dx-\int \frac {\left (-2+2 \log (x)+\log ^2(x)\right ) \log (1+4 x)}{\log ^2(x)} \, dx\\ &=-\left (2 \int \frac {1}{x (1+4 x) \log ^2(x)} \, dx\right )-2 \int \frac {x}{(1+4 x) \log ^2(x)} \, dx+2 \int \frac {x \left (-2+11 x+12 x^2\right )}{(1+4 x) \log (x)} \, dx-8 \int \frac {1}{(1+4 x) \log ^2(x)} \, dx-8 \int \frac {x^3}{(1+4 x) \log ^2(x)} \, dx-10 \int \frac {x^2}{(1+4 x) \log ^2(x)} \, dx+\int \left (-1+2 x+3 x^2+\frac {1}{1+4 x}\right ) \, dx-\int \left (\log (1+4 x)-\frac {2 \log (1+4 x)}{\log ^2(x)}+\frac {2 \log (1+4 x)}{\log (x)}\right ) \, dx\\ &=-x+x^2+x^3+\frac {1}{4} \log (1+4 x)-2 \int \frac {1}{x (1+4 x) \log ^2(x)} \, dx-2 \int \frac {x}{(1+4 x) \log ^2(x)} \, dx+2 \int \frac {x \left (-2+11 x+12 x^2\right )}{(1+4 x) \log (x)} \, dx+2 \int \frac {\log (1+4 x)}{\log ^2(x)} \, dx-2 \int \frac {\log (1+4 x)}{\log (x)} \, dx-8 \int \frac {1}{(1+4 x) \log ^2(x)} \, dx-8 \int \frac {x^3}{(1+4 x) \log ^2(x)} \, dx-10 \int \frac {x^2}{(1+4 x) \log ^2(x)} \, dx-\int \log (1+4 x) \, dx\\ &=-x+x^2+x^3+\frac {1}{4} \log (1+4 x)-\frac {1}{4} \operatorname {Subst}(\int \log (x) \, dx,x,1+4 x)-2 \int \frac {1}{x (1+4 x) \log ^2(x)} \, dx-2 \int \frac {x}{(1+4 x) \log ^2(x)} \, dx+2 \int \frac {x \left (-2+11 x+12 x^2\right )}{(1+4 x) \log (x)} \, dx+2 \int \frac {\log (1+4 x)}{\log ^2(x)} \, dx-2 \int \frac {\log (1+4 x)}{\log (x)} \, dx-8 \int \frac {1}{(1+4 x) \log ^2(x)} \, dx-8 \int \frac {x^3}{(1+4 x) \log ^2(x)} \, dx-10 \int \frac {x^2}{(1+4 x) \log ^2(x)} \, dx\\ &=x^2+x^3+\frac {1}{4} \log (1+4 x)-\frac {1}{4} (1+4 x) \log (1+4 x)-2 \int \frac {1}{x (1+4 x) \log ^2(x)} \, dx-2 \int \frac {x}{(1+4 x) \log ^2(x)} \, dx+2 \int \frac {x \left (-2+11 x+12 x^2\right )}{(1+4 x) \log (x)} \, dx+2 \int \frac {\log (1+4 x)}{\log ^2(x)} \, dx-2 \int \frac {\log (1+4 x)}{\log (x)} \, dx-8 \int \frac {1}{(1+4 x) \log ^2(x)} \, dx-8 \int \frac {x^3}{(1+4 x) \log ^2(x)} \, dx-10 \int \frac {x^2}{(1+4 x) \log ^2(x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.46, size = 38, normalized size = 1.46 \begin {gather*} x^2+x^3+\frac {2 \left (1+x^2+x^3\right )}{\log (x)}-\frac {x (2+\log (x)) \log (1+4 x)}{\log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 43, normalized size = 1.65 \begin {gather*} \frac {2 \, x^{3} + 2 \, x^{2} - {\left (x \log \relax (x) + 2 \, x\right )} \log \left (4 \, x + 1\right ) + {\left (x^{3} + x^{2}\right )} \log \relax (x) + 2}{\log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 38, normalized size = 1.46 \begin {gather*} x^{3} + x^{2} - {\left (x + \frac {2 \, x}{\log \relax (x)}\right )} \log \left (4 \, x + 1\right ) + \frac {2 \, {\left (x^{3} + x^{2} + 1\right )}}{\log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.40, size = 48, normalized size = 1.85
method | result | size |
risch | \(-\frac {x \left (\ln \relax (x )+2\right ) \ln \left (4 x +1\right )}{\ln \relax (x )}+\frac {x^{3} \ln \relax (x )+2 x^{3}+x^{2} \ln \relax (x )+2 x^{2}+2}{\ln \relax (x )}\) | \(48\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.79, size = 43, normalized size = 1.65 \begin {gather*} \frac {2 \, x^{3} + 2 \, x^{2} - {\left (x \log \relax (x) + 2 \, x\right )} \log \left (4 \, x + 1\right ) + {\left (x^{3} + x^{2}\right )} \log \relax (x) + 2}{\log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.65, size = 60, normalized size = 2.31 \begin {gather*} \frac {2\,x^2+2\,x^3-2\,x^2\,\ln \relax (x)\,\left (3\,x+2\right )+2}{\ln \relax (x)}+5\,x^2+7\,x^3-\frac {\ln \left (4\,x+1\right )\,\left (2\,x+x\,\ln \relax (x)\right )}{\ln \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.43, size = 41, normalized size = 1.58 \begin {gather*} x^{3} + x^{2} + \frac {\left (- x \log {\relax (x )} - 2 x\right ) \log {\left (4 x + 1 \right )}}{\log {\relax (x )}} + \frac {2 x^{3} + 2 x^{2} + 2}{\log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________