Optimal. Leaf size=27 \[ -e^{-5+x}-\frac {x}{-2+x}+x \left (e^x+x\right ) \log ^2(x) \]
________________________________________________________________________________________
Rubi [F] time = 0.42, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {2+e^{-5+x} \left (-4+4 x-x^2\right )+\left (8 x-8 x^2+2 x^3+e^x \left (8-8 x+2 x^2\right )\right ) \log (x)+\left (8 x-8 x^2+2 x^3+e^x \left (4-3 x^2+x^3\right )\right ) \log ^2(x)}{4-4 x+x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2+e^{-5+x} \left (-4+4 x-x^2\right )+\left (8 x-8 x^2+2 x^3+e^x \left (8-8 x+2 x^2\right )\right ) \log (x)+\left (8 x-8 x^2+2 x^3+e^x \left (4-3 x^2+x^3\right )\right ) \log ^2(x)}{(-2+x)^2} \, dx\\ &=\int \left (-e^{-5+x}+\frac {2}{(-2+x)^2}+2 \left (e^x+x\right ) \log (x)+\left (2 x+e^x (1+x)\right ) \log ^2(x)\right ) \, dx\\ &=\frac {2}{2-x}+2 \int \left (e^x+x\right ) \log (x) \, dx-\int e^{-5+x} \, dx+\int \left (2 x+e^x (1+x)\right ) \log ^2(x) \, dx\\ &=-e^{-5+x}+\frac {2}{2-x}+2 e^x \log (x)+x^2 \log (x)-2 \int \left (\frac {e^x}{x}+\frac {x}{2}\right ) \, dx+\int \left (2 x \log ^2(x)+e^x (1+x) \log ^2(x)\right ) \, dx\\ &=-e^{-5+x}+\frac {2}{2-x}-\frac {x^2}{2}+2 e^x \log (x)+x^2 \log (x)-2 \int \frac {e^x}{x} \, dx+2 \int x \log ^2(x) \, dx+\int e^x (1+x) \log ^2(x) \, dx\\ &=-e^{-5+x}+\frac {2}{2-x}-\frac {x^2}{2}-2 \text {Ei}(x)+2 e^x \log (x)+x^2 \log (x)+x^2 \log ^2(x)-2 \int x \log (x) \, dx+\int \left (e^x \log ^2(x)+e^x x \log ^2(x)\right ) \, dx\\ &=-e^{-5+x}+\frac {2}{2-x}-2 \text {Ei}(x)+2 e^x \log (x)+x^2 \log ^2(x)+\int e^x \log ^2(x) \, dx+\int e^x x \log ^2(x) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 26, normalized size = 0.96 \begin {gather*} -e^{-5+x}-\frac {2}{-2+x}+x \left (e^x+x\right ) \log ^2(x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 50, normalized size = 1.85 \begin {gather*} \frac {{\left ({\left ({\left (x^{3} - 2 \, x^{2}\right )} e^{5} + {\left (x^{2} - 2 \, x\right )} e^{\left (x + 5\right )}\right )} \log \relax (x)^{2} - {\left (x - 2\right )} e^{x} - 2 \, e^{5}\right )} e^{\left (-5\right )}}{x - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.34, size = 70, normalized size = 2.59 \begin {gather*} \frac {x^{3} e^{5} \log \relax (x)^{2} - 2 \, x^{2} e^{5} \log \relax (x)^{2} + x^{2} e^{\left (x + 5\right )} \log \relax (x)^{2} - 2 \, x e^{\left (x + 5\right )} \log \relax (x)^{2} - x e^{x} - 2 \, e^{5} + 2 \, e^{x}}{x e^{5} - 2 \, e^{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.44, size = 31, normalized size = 1.15
method | result | size |
default | \(x \,{\mathrm e}^{x} \ln \relax (x )^{2}-\frac {2}{x -2}+x^{2} \ln \relax (x )^{2}-{\mathrm e}^{x -5}\) | \(31\) |
risch | \(\left ({\mathrm e}^{x} x +x^{2}\right ) \ln \relax (x )^{2}-\frac {x \,{\mathrm e}^{x -5}-2 \,{\mathrm e}^{x -5}+2}{x -2}\) | \(36\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} x^{2} \log \relax (x)^{2} + x e^{x} \log \relax (x)^{2} + \frac {4 \, e^{\left (-3\right )} E_{2}\left (-x + 2\right )}{x - 2} - \frac {2}{x - 2} - \int \frac {{\left (x^{2} - 4 \, x\right )} e^{x}}{x^{2} e^{5} - 4 \, x e^{5} + 4 \, e^{5}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.65, size = 27, normalized size = 1.00 \begin {gather*} {\ln \relax (x)}^2\,\left (x\,{\mathrm {e}}^x+x^2\right )-\frac {2}{x-2}-{\mathrm {e}}^{x-5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.51, size = 31, normalized size = 1.15 \begin {gather*} x^{2} \log {\relax (x )}^{2} + \frac {\left (x e^{5} \log {\relax (x )}^{2} - 1\right ) e^{x}}{e^{5}} - \frac {2}{x - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________