Optimal. Leaf size=33 \[ \frac {x}{5}-\frac {x-x^2}{3-e^{\frac {x^2}{e^2}}+2 x} \]
________________________________________________________________________________________
Rubi [F] time = 1.46, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{2+\frac {2 x^2}{e^2}}+e^2 \left (-6+42 x+14 x^2\right )+e^{\frac {x^2}{e^2}} \left (e^2 (-1-14 x)-10 x^2+10 x^3\right )}{5 e^{2+\frac {2 x^2}{e^2}}+e^{2+\frac {x^2}{e^2}} (-30-20 x)+e^2 \left (45+60 x+20 x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{2+\frac {2 x^2}{e^2}}+e^2 \left (-6+42 x+14 x^2\right )+e^{\frac {x^2}{e^2}} \left (e^2 (-1-14 x)-10 x^2+10 x^3\right )}{5 e^2 \left (3-e^{\frac {x^2}{e^2}}+2 x\right )^2} \, dx\\ &=\frac {\int \frac {e^{2+\frac {2 x^2}{e^2}}+e^2 \left (-6+42 x+14 x^2\right )+e^{\frac {x^2}{e^2}} \left (e^2 (-1-14 x)-10 x^2+10 x^3\right )}{\left (3-e^{\frac {x^2}{e^2}}+2 x\right )^2} \, dx}{5 e^2}\\ &=\frac {\int \left (e^2+\frac {10 (-1+x) x \left (-e^2+3 x+2 x^2\right )}{\left (-3+e^{\frac {x^2}{e^2}}-2 x\right )^2}+\frac {5 \left (e^2-2 e^2 x-2 x^2+2 x^3\right )}{-3+e^{\frac {x^2}{e^2}}-2 x}\right ) \, dx}{5 e^2}\\ &=\frac {x}{5}+\frac {\int \frac {e^2-2 e^2 x-2 x^2+2 x^3}{-3+e^{\frac {x^2}{e^2}}-2 x} \, dx}{e^2}+\frac {2 \int \frac {(-1+x) x \left (-e^2+3 x+2 x^2\right )}{\left (-3+e^{\frac {x^2}{e^2}}-2 x\right )^2} \, dx}{e^2}\\ &=\frac {x}{5}+\frac {\int \left (\frac {e^2}{-3+e^{\frac {x^2}{e^2}}-2 x}+\frac {2 x^3}{-3+e^{\frac {x^2}{e^2}}-2 x}+\frac {2 e^2 x}{3-e^{\frac {x^2}{e^2}}+2 x}+\frac {2 x^2}{3-e^{\frac {x^2}{e^2}}+2 x}\right ) \, dx}{e^2}+\frac {2 \int \left (\frac {e^2 x}{\left (-3+e^{\frac {x^2}{e^2}}-2 x\right )^2}-\frac {\left (3+e^2\right ) x^2}{\left (-3+e^{\frac {x^2}{e^2}}-2 x\right )^2}+\frac {x^3}{\left (-3+e^{\frac {x^2}{e^2}}-2 x\right )^2}+\frac {2 x^4}{\left (-3+e^{\frac {x^2}{e^2}}-2 x\right )^2}\right ) \, dx}{e^2}\\ &=\frac {x}{5}+2 \int \frac {x}{\left (-3+e^{\frac {x^2}{e^2}}-2 x\right )^2} \, dx+2 \int \frac {x}{3-e^{\frac {x^2}{e^2}}+2 x} \, dx+\frac {2 \int \frac {x^3}{\left (-3+e^{\frac {x^2}{e^2}}-2 x\right )^2} \, dx}{e^2}+\frac {2 \int \frac {x^3}{-3+e^{\frac {x^2}{e^2}}-2 x} \, dx}{e^2}+\frac {2 \int \frac {x^2}{3-e^{\frac {x^2}{e^2}}+2 x} \, dx}{e^2}+\frac {4 \int \frac {x^4}{\left (-3+e^{\frac {x^2}{e^2}}-2 x\right )^2} \, dx}{e^2}+\frac {\left (2 \left (-3-e^2\right )\right ) \int \frac {x^2}{\left (-3+e^{\frac {x^2}{e^2}}-2 x\right )^2} \, dx}{e^2}+\int \frac {1}{-3+e^{\frac {x^2}{e^2}}-2 x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 28, normalized size = 0.85 \begin {gather*} \frac {1}{5} \left (x-\frac {5 (-1+x) x}{-3+e^{\frac {x^2}{e^2}}-2 x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.75, size = 55, normalized size = 1.67 \begin {gather*} \frac {{\left (7 \, x^{2} - 2 \, x\right )} e^{2} - x e^{\left ({\left (x^{2} + 2 \, e^{2}\right )} e^{\left (-2\right )}\right )}}{5 \, {\left ({\left (2 \, x + 3\right )} e^{2} - e^{\left ({\left (x^{2} + 2 \, e^{2}\right )} e^{\left (-2\right )}\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.16, size = 26, normalized size = 0.79
method | result | size |
risch | \(\frac {x}{5}+\frac {x \left (x -1\right )}{2 x -{\mathrm e}^{x^{2} {\mathrm e}^{-2}}+3}\) | \(26\) |
norman | \(\frac {\left (-\frac {2 x \,{\mathrm e}}{5}+\frac {7 x^{2} {\mathrm e}}{5}-\frac {x \,{\mathrm e} \,{\mathrm e}^{x^{2} {\mathrm e}^{-2}}}{5}\right ) {\mathrm e}^{-1}}{2 x -{\mathrm e}^{x^{2} {\mathrm e}^{-2}}+3}\) | \(51\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.78, size = 37, normalized size = 1.12 \begin {gather*} \frac {7 \, x^{2} - x e^{\left (x^{2} e^{\left (-2\right )}\right )} - 2 \, x}{5 \, {\left (2 \, x - e^{\left (x^{2} e^{\left (-2\right )}\right )} + 3\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.63, size = 31, normalized size = 0.94 \begin {gather*} -\frac {x\,\left ({\mathrm {e}}^{x^2\,{\mathrm {e}}^{-2}}-7\,x+2\right )}{5\,\left (2\,x-{\mathrm {e}}^{x^2\,{\mathrm {e}}^{-2}}+3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 20, normalized size = 0.61 \begin {gather*} \frac {x}{5} + \frac {- x^{2} + x}{- 2 x + e^{\frac {x^{2}}{e^{2}}} - 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________