Optimal. Leaf size=22 \[ x^2 \log \left (\left (x+\frac {5 x}{3 (25+x)}+\log (\log (x))\right )^2\right ) \]
________________________________________________________________________________________
Rubi [A] time = 8.62, antiderivative size = 32, normalized size of antiderivative = 1.45, number of steps used = 29, number of rules used = 5, integrand size = 175, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.029, Rules used = {6688, 12, 6742, 30, 2555} \begin {gather*} x^2 \log \left (\frac {(x (3 x+80)+3 (x+25) \log (\log (x)))^2}{9 (x+25)^2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 30
Rule 2555
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 x \left (1875+150 x+3 x^2+x \left (2000+150 x+3 x^2\right ) \log (x)+(25+x) \log (x) (x (80+3 x)+3 (25+x) \log (\log (x))) \log \left (\frac {(x (80+3 x)+3 (25+x) \log (\log (x)))^2}{9 (25+x)^2}\right )\right )}{(25+x) \log (x) (x (80+3 x)+3 (25+x) \log (\log (x)))} \, dx\\ &=2 \int \frac {x \left (1875+150 x+3 x^2+x \left (2000+150 x+3 x^2\right ) \log (x)+(25+x) \log (x) (x (80+3 x)+3 (25+x) \log (\log (x))) \log \left (\frac {(x (80+3 x)+3 (25+x) \log (\log (x)))^2}{9 (25+x)^2}\right )\right )}{(25+x) \log (x) (x (80+3 x)+3 (25+x) \log (\log (x)))} \, dx\\ &=2 \int \left (\frac {x^2 \left (2000+150 x+3 x^2\right )}{(25+x) \left (80 x+3 x^2+75 \log (\log (x))+3 x \log (\log (x))\right )}+\frac {1875 x}{(25+x) \log (x) \left (80 x+3 x^2+75 \log (\log (x))+3 x \log (\log (x))\right )}+\frac {150 x^2}{(25+x) \log (x) \left (80 x+3 x^2+75 \log (\log (x))+3 x \log (\log (x))\right )}+\frac {3 x^3}{(25+x) \log (x) \left (80 x+3 x^2+75 \log (\log (x))+3 x \log (\log (x))\right )}+x \log \left (\frac {(x (80+3 x)+3 (25+x) \log (\log (x)))^2}{9 (25+x)^2}\right )\right ) \, dx\\ &=2 \int \frac {x^2 \left (2000+150 x+3 x^2\right )}{(25+x) \left (80 x+3 x^2+75 \log (\log (x))+3 x \log (\log (x))\right )} \, dx+2 \int x \log \left (\frac {(x (80+3 x)+3 (25+x) \log (\log (x)))^2}{9 (25+x)^2}\right ) \, dx+6 \int \frac {x^3}{(25+x) \log (x) \left (80 x+3 x^2+75 \log (\log (x))+3 x \log (\log (x))\right )} \, dx+300 \int \frac {x^2}{(25+x) \log (x) \left (80 x+3 x^2+75 \log (\log (x))+3 x \log (\log (x))\right )} \, dx+3750 \int \frac {x}{(25+x) \log (x) \left (80 x+3 x^2+75 \log (\log (x))+3 x \log (\log (x))\right )} \, dx\\ &=x^2 \log \left (\frac {(x (80+3 x)+3 (25+x) \log (\log (x)))^2}{9 (25+x)^2}\right )-2 \int \frac {x \left (3 (25+x)^2+x \left (2000+150 x+3 x^2\right ) \log (x)\right )}{(25+x) \log (x) (x (80+3 x)+3 (25+x) \log (\log (x)))} \, dx+2 \int \left (-\frac {3125}{80 x+3 x^2+75 \log (\log (x))+3 x \log (\log (x))}+\frac {125 x}{80 x+3 x^2+75 \log (\log (x))+3 x \log (\log (x))}+\frac {75 x^2}{80 x+3 x^2+75 \log (\log (x))+3 x \log (\log (x))}+\frac {3 x^3}{80 x+3 x^2+75 \log (\log (x))+3 x \log (\log (x))}+\frac {78125}{(25+x) \left (80 x+3 x^2+75 \log (\log (x))+3 x \log (\log (x))\right )}\right ) \, dx+6 \int \left (\frac {625}{\log (x) \left (80 x+3 x^2+75 \log (\log (x))+3 x \log (\log (x))\right )}-\frac {25 x}{\log (x) \left (80 x+3 x^2+75 \log (\log (x))+3 x \log (\log (x))\right )}+\frac {x^2}{\log (x) \left (80 x+3 x^2+75 \log (\log (x))+3 x \log (\log (x))\right )}-\frac {15625}{(25+x) \log (x) \left (80 x+3 x^2+75 \log (\log (x))+3 x \log (\log (x))\right )}\right ) \, dx+300 \int \left (-\frac {25}{\log (x) \left (80 x+3 x^2+75 \log (\log (x))+3 x \log (\log (x))\right )}+\frac {x}{\log (x) \left (80 x+3 x^2+75 \log (\log (x))+3 x \log (\log (x))\right )}+\frac {625}{(25+x) \log (x) \left (80 x+3 x^2+75 \log (\log (x))+3 x \log (\log (x))\right )}\right ) \, dx+3750 \int \left (\frac {1}{\log (x) \left (80 x+3 x^2+75 \log (\log (x))+3 x \log (\log (x))\right )}-\frac {25}{(25+x) \log (x) \left (80 x+3 x^2+75 \log (\log (x))+3 x \log (\log (x))\right )}\right ) \, dx\\ &=x^2 \log \left (\frac {(x (80+3 x)+3 (25+x) \log (\log (x)))^2}{9 (25+x)^2}\right )-2 \int \left (\frac {1875+150 x+3 x^2+2000 x \log (x)+150 x^2 \log (x)+3 x^3 \log (x)}{\log (x) \left (80 x+3 x^2+75 \log (\log (x))+3 x \log (\log (x))\right )}-\frac {25 \left (1875+150 x+3 x^2+2000 x \log (x)+150 x^2 \log (x)+3 x^3 \log (x)\right )}{(25+x) \log (x) \left (80 x+3 x^2+75 \log (\log (x))+3 x \log (\log (x))\right )}\right ) \, dx+6 \int \frac {x^3}{80 x+3 x^2+75 \log (\log (x))+3 x \log (\log (x))} \, dx+6 \int \frac {x^2}{\log (x) \left (80 x+3 x^2+75 \log (\log (x))+3 x \log (\log (x))\right )} \, dx+150 \int \frac {x^2}{80 x+3 x^2+75 \log (\log (x))+3 x \log (\log (x))} \, dx-150 \int \frac {x}{\log (x) \left (80 x+3 x^2+75 \log (\log (x))+3 x \log (\log (x))\right )} \, dx+250 \int \frac {x}{80 x+3 x^2+75 \log (\log (x))+3 x \log (\log (x))} \, dx+300 \int \frac {x}{\log (x) \left (80 x+3 x^2+75 \log (\log (x))+3 x \log (\log (x))\right )} \, dx+2 \left (3750 \int \frac {1}{\log (x) \left (80 x+3 x^2+75 \log (\log (x))+3 x \log (\log (x))\right )} \, dx\right )-6250 \int \frac {1}{80 x+3 x^2+75 \log (\log (x))+3 x \log (\log (x))} \, dx-7500 \int \frac {1}{\log (x) \left (80 x+3 x^2+75 \log (\log (x))+3 x \log (\log (x))\right )} \, dx-2 \left (93750 \int \frac {1}{(25+x) \log (x) \left (80 x+3 x^2+75 \log (\log (x))+3 x \log (\log (x))\right )} \, dx\right )+156250 \int \frac {1}{(25+x) \left (80 x+3 x^2+75 \log (\log (x))+3 x \log (\log (x))\right )} \, dx+187500 \int \frac {1}{(25+x) \log (x) \left (80 x+3 x^2+75 \log (\log (x))+3 x \log (\log (x))\right )} \, dx\\ &=x^2 \log \left (\frac {(x (80+3 x)+3 (25+x) \log (\log (x)))^2}{9 (25+x)^2}\right )-2 \int \frac {1875+150 x+3 x^2+2000 x \log (x)+150 x^2 \log (x)+3 x^3 \log (x)}{\log (x) \left (80 x+3 x^2+75 \log (\log (x))+3 x \log (\log (x))\right )} \, dx+6 \int \frac {x^3}{80 x+3 x^2+75 \log (\log (x))+3 x \log (\log (x))} \, dx+6 \int \frac {x^2}{\log (x) \left (80 x+3 x^2+75 \log (\log (x))+3 x \log (\log (x))\right )} \, dx+50 \int \frac {1875+150 x+3 x^2+2000 x \log (x)+150 x^2 \log (x)+3 x^3 \log (x)}{(25+x) \log (x) \left (80 x+3 x^2+75 \log (\log (x))+3 x \log (\log (x))\right )} \, dx+150 \int \frac {x^2}{80 x+3 x^2+75 \log (\log (x))+3 x \log (\log (x))} \, dx-150 \int \frac {x}{\log (x) \left (80 x+3 x^2+75 \log (\log (x))+3 x \log (\log (x))\right )} \, dx+250 \int \frac {x}{80 x+3 x^2+75 \log (\log (x))+3 x \log (\log (x))} \, dx+300 \int \frac {x}{\log (x) \left (80 x+3 x^2+75 \log (\log (x))+3 x \log (\log (x))\right )} \, dx+2 \left (3750 \int \frac {1}{\log (x) \left (80 x+3 x^2+75 \log (\log (x))+3 x \log (\log (x))\right )} \, dx\right )-6250 \int \frac {1}{80 x+3 x^2+75 \log (\log (x))+3 x \log (\log (x))} \, dx-7500 \int \frac {1}{\log (x) \left (80 x+3 x^2+75 \log (\log (x))+3 x \log (\log (x))\right )} \, dx-2 \left (93750 \int \frac {1}{(25+x) \log (x) \left (80 x+3 x^2+75 \log (\log (x))+3 x \log (\log (x))\right )} \, dx\right )+156250 \int \frac {1}{(25+x) \left (80 x+3 x^2+75 \log (\log (x))+3 x \log (\log (x))\right )} \, dx+187500 \int \frac {1}{(25+x) \log (x) \left (80 x+3 x^2+75 \log (\log (x))+3 x \log (\log (x))\right )} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 32, normalized size = 1.45 \begin {gather*} x^2 \log \left (\frac {(x (80+3 x)+3 (25+x) \log (\log (x)))^2}{9 (25+x)^2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.99, size = 67, normalized size = 3.05 \begin {gather*} x^{2} \log \left (\frac {9 \, x^{4} + 480 \, x^{3} + 9 \, {\left (x^{2} + 50 \, x + 625\right )} \log \left (\log \relax (x)\right )^{2} + 6400 \, x^{2} + 6 \, {\left (3 \, x^{3} + 155 \, x^{2} + 2000 \, x\right )} \log \left (\log \relax (x)\right )}{9 \, {\left (x^{2} + 50 \, x + 625\right )}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 102.74, size = 85, normalized size = 3.86 \begin {gather*} x^{2} \log \left (9 \, x^{4} + 18 \, x^{3} \log \left (\log \relax (x)\right ) + 9 \, x^{2} \log \left (\log \relax (x)\right )^{2} + 480 \, x^{3} + 930 \, x^{2} \log \left (\log \relax (x)\right ) + 450 \, x \log \left (\log \relax (x)\right )^{2} + 6400 \, x^{2} + 12000 \, x \log \left (\log \relax (x)\right ) + 5625 \, \log \left (\log \relax (x)\right )^{2}\right ) - x^{2} \log \left (9 \, x^{2} + 450 \, x + 5625\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.47, size = 438, normalized size = 19.91
method | result | size |
risch | \(2 x^{2} \ln \left (x^{2}+\left (\ln \left (\ln \relax (x )\right )+\frac {80}{3}\right ) x +25 \ln \left (\ln \relax (x )\right )\right )-2 x^{2} \ln \left (x +25\right )-\frac {i \pi \,x^{2} \mathrm {csgn}\left (\frac {i}{\left (x +25\right )^{2}}\right ) \mathrm {csgn}\left (i \left (x^{2}+\left (\ln \left (\ln \relax (x )\right )+\frac {80}{3}\right ) x +25 \ln \left (\ln \relax (x )\right )\right )^{2}\right ) \mathrm {csgn}\left (\frac {i \left (x^{2}+\left (\ln \left (\ln \relax (x )\right )+\frac {80}{3}\right ) x +25 \ln \left (\ln \relax (x )\right )\right )^{2}}{\left (x +25\right )^{2}}\right )}{2}+\frac {i \pi \,x^{2} \mathrm {csgn}\left (\frac {i}{\left (x +25\right )^{2}}\right ) \mathrm {csgn}\left (\frac {i \left (x^{2}+\left (\ln \left (\ln \relax (x )\right )+\frac {80}{3}\right ) x +25 \ln \left (\ln \relax (x )\right )\right )^{2}}{\left (x +25\right )^{2}}\right )^{2}}{2}+\frac {i \pi \,x^{2} \mathrm {csgn}\left (i \left (x +25\right )\right )^{2} \mathrm {csgn}\left (i \left (x +25\right )^{2}\right )}{2}-i \pi \,x^{2} \mathrm {csgn}\left (i \left (x +25\right )\right ) \mathrm {csgn}\left (i \left (x +25\right )^{2}\right )^{2}+\frac {i \pi \,x^{2} \mathrm {csgn}\left (i \left (x +25\right )^{2}\right )^{3}}{2}-\frac {i \pi \,x^{2} \mathrm {csgn}\left (i \left (x^{2}+\left (\ln \left (\ln \relax (x )\right )+\frac {80}{3}\right ) x +25 \ln \left (\ln \relax (x )\right )\right )\right )^{2} \mathrm {csgn}\left (i \left (x^{2}+\left (\ln \left (\ln \relax (x )\right )+\frac {80}{3}\right ) x +25 \ln \left (\ln \relax (x )\right )\right )^{2}\right )}{2}+i \pi \,x^{2} \mathrm {csgn}\left (i \left (x^{2}+\left (\ln \left (\ln \relax (x )\right )+\frac {80}{3}\right ) x +25 \ln \left (\ln \relax (x )\right )\right )\right ) \mathrm {csgn}\left (i \left (x^{2}+\left (\ln \left (\ln \relax (x )\right )+\frac {80}{3}\right ) x +25 \ln \left (\ln \relax (x )\right )\right )^{2}\right )^{2}-\frac {i \pi \,x^{2} \mathrm {csgn}\left (i \left (x^{2}+\left (\ln \left (\ln \relax (x )\right )+\frac {80}{3}\right ) x +25 \ln \left (\ln \relax (x )\right )\right )^{2}\right )^{3}}{2}+\frac {i \pi \,x^{2} \mathrm {csgn}\left (i \left (x^{2}+\left (\ln \left (\ln \relax (x )\right )+\frac {80}{3}\right ) x +25 \ln \left (\ln \relax (x )\right )\right )^{2}\right ) \mathrm {csgn}\left (\frac {i \left (x^{2}+\left (\ln \left (\ln \relax (x )\right )+\frac {80}{3}\right ) x +25 \ln \left (\ln \relax (x )\right )\right )^{2}}{\left (x +25\right )^{2}}\right )^{2}}{2}-\frac {i \pi \,x^{2} \mathrm {csgn}\left (\frac {i \left (x^{2}+\left (\ln \left (\ln \relax (x )\right )+\frac {80}{3}\right ) x +25 \ln \left (\ln \relax (x )\right )\right )^{2}}{\left (x +25\right )^{2}}\right )^{3}}{2}\) | \(438\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.53, size = 40, normalized size = 1.82 \begin {gather*} -2 \, x^{2} \log \relax (3) + 2 \, x^{2} \log \left (3 \, x^{2} + 3 \, {\left (x + 25\right )} \log \left (\log \relax (x)\right ) + 80 \, x\right ) - 2 \, x^{2} \log \left (x + 25\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.30, size = 68, normalized size = 3.09 \begin {gather*} x^2\,\ln \left (\frac {\ln \left (\ln \relax (x)\right )\,\left (18\,x^3+930\,x^2+12000\,x\right )+{\ln \left (\ln \relax (x)\right )}^2\,\left (9\,x^2+450\,x+5625\right )+6400\,x^2+480\,x^3+9\,x^4}{9\,x^2+450\,x+5625}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 4.09, size = 92, normalized size = 4.18 \begin {gather*} \left (x^{2} - \frac {625}{6}\right ) \log {\left (\frac {9 x^{4} + 480 x^{3} + 6400 x^{2} + \left (9 x^{2} + 450 x + 5625\right ) \log {\left (\log {\relax (x )} \right )}^{2} + \left (18 x^{3} + 930 x^{2} + 12000 x\right ) \log {\left (\log {\relax (x )} \right )}}{9 x^{2} + 450 x + 5625} \right )} + \frac {625 \log {\left (\log {\left (\log {\relax (x )} \right )} + \frac {3 x^{2} + 80 x}{3 x + 75} \right )}}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________