Optimal. Leaf size=30 \[ \log \left (x^2-x \log (2) \left (2-\frac {1}{x}-\frac {x^2}{\log (6-x)}\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 5.78, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {x^3 \log (2)+\left (18 x^2-3 x^3\right ) \log (2) \log (6-x)+\left (12 x-2 x^2+(-12+2 x) \log (2)\right ) \log ^2(6-x)}{\left (6 x^3-x^4\right ) \log (2) \log (6-x)+\left (6 x^2-x^3+\left (6-13 x+2 x^2\right ) \log (2)\right ) \log ^2(6-x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x^3 \log (2)+\left (18 x^2-3 x^3\right ) \log (2) \log (6-x)+\left (12 x-2 x^2+(-12+2 x) \log (2)\right ) \log ^2(6-x)}{(6-x) \log (6-x) \left (x^3 \log (2)+x^2 \log (6-x)+\log (2) \log (6-x)-x \log (4) \log (6-x)\right )} \, dx\\ &=\int \left (\frac {2 (x-\log (2))}{x^2+\log (2)-x \log (4)}-\frac {1}{(-6+x) \log (6-x)}+\frac {x^2+\log (2)-x \log (4)}{(-6+x) \left (x^3 \log (2)+x^2 \log (6-x)+\log (2) \log (6-x)-x \log (4) \log (6-x)\right )}+\frac {x^2 \log (2) \left (x^2-2 x \log (4)+\log (8)\right )}{\left (x^2+\log (2)-x \log (4)\right ) \left (x^3 \log (2)+x^2 \log (6-x)+\log (2) \log (6-x)-x \log (4) \log (6-x)\right )}\right ) \, dx\\ &=2 \int \frac {x-\log (2)}{x^2+\log (2)-x \log (4)} \, dx+\log (2) \int \frac {x^2 \left (x^2-2 x \log (4)+\log (8)\right )}{\left (x^2+\log (2)-x \log (4)\right ) \left (x^3 \log (2)+x^2 \log (6-x)+\log (2) \log (6-x)-x \log (4) \log (6-x)\right )} \, dx-\int \frac {1}{(-6+x) \log (6-x)} \, dx+\int \frac {x^2+\log (2)-x \log (4)}{(-6+x) \left (x^3 \log (2)+x^2 \log (6-x)+\log (2) \log (6-x)-x \log (4) \log (6-x)\right )} \, dx\\ &=\frac {2 \log (2) \log \left (x^2+\log (2)-x \log (4)\right )}{\log (4)}+\log (2) \int \frac {x^2 \left (x^2-2 x \log (4)+\log (8)\right )}{\left (x^2+\log (2)-x \log (4)\right ) \left (x^3 \log (2)+\left (x^2+\log (2)-x \log (4)\right ) \log (6-x)\right )} \, dx+\int \left (\frac {x}{x^3 \log (2)+x^2 \log (6-x)+\log (2) \log (6-x)-x \log (4) \log (6-x)}+\frac {6 \left (1-\frac {\log (2)}{3}\right )}{x^3 \log (2)+x^2 \log (6-x)+\log (2) \log (6-x)-x \log (4) \log (6-x)}+\frac {36+\log (2)-6 \log (4)}{(-6+x) \left (x^3 \log (2)+x^2 \log (6-x)+\log (2) \log (6-x)-x \log (4) \log (6-x)\right )}\right ) \, dx-\operatorname {Subst}\left (\int \frac {1}{x \log (x)} \, dx,x,6-x\right )\\ &=\frac {2 \log (2) \log \left (x^2+\log (2)-x \log (4)\right )}{\log (4)}+\left (6 \left (1-\frac {\log (2)}{3}\right )\right ) \int \frac {1}{x^3 \log (2)+x^2 \log (6-x)+\log (2) \log (6-x)-x \log (4) \log (6-x)} \, dx+\log (2) \int \left (\frac {x^2}{x^3 \log (2)+x^2 \log (6-x)+\log (2) \log (6-x)-x \log (4) \log (6-x)}-\frac {x \log (4)}{x^3 \log (2)+x^2 \log (6-x)+\log (2) \log (6-x)-x \log (4) \log (6-x)}+\frac {\log (4) \left (-\log (2) (1-\log (4))-x \left (\log ^2(4)-\log (8)\right )\right )}{\left (x^2+\log (2)-x \log (4)\right ) \left (x^3 \log (2)+x^2 \log (6-x)+\log (2) \log (6-x)-x \log (4) \log (6-x)\right )}-\frac {\log (2) \left (1+\frac {\log ^2(4)-\log (8)}{\log (2)}\right )}{x^3 \log (2)+x^2 \log (6-x)+\log (2) \log (6-x)-x \log (4) \log (6-x)}\right ) \, dx+(36+\log (2)-6 \log (4)) \int \frac {1}{(-6+x) \left (x^3 \log (2)+x^2 \log (6-x)+\log (2) \log (6-x)-x \log (4) \log (6-x)\right )} \, dx+\int \frac {x}{x^3 \log (2)+x^2 \log (6-x)+\log (2) \log (6-x)-x \log (4) \log (6-x)} \, dx-\operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log (6-x)\right )\\ &=\frac {2 \log (2) \log \left (x^2+\log (2)-x \log (4)\right )}{\log (4)}-\log (\log (6-x))+\left (6 \left (1-\frac {\log (2)}{3}\right )\right ) \int \frac {1}{x^3 \log (2)+\left (x^2+\log (2)-x \log (4)\right ) \log (6-x)} \, dx+\log (2) \int \frac {x^2}{x^3 \log (2)+x^2 \log (6-x)+\log (2) \log (6-x)-x \log (4) \log (6-x)} \, dx+(36+\log (2)-6 \log (4)) \int \frac {1}{(-6+x) \left (x^3 \log (2)+\left (x^2+\log (2)-x \log (4)\right ) \log (6-x)\right )} \, dx-(\log (2) \log (4)) \int \frac {x}{x^3 \log (2)+x^2 \log (6-x)+\log (2) \log (6-x)-x \log (4) \log (6-x)} \, dx+(\log (2) \log (4)) \int \frac {-\log (2) (1-\log (4))-x \left (\log ^2(4)-\log (8)\right )}{\left (x^2+\log (2)-x \log (4)\right ) \left (x^3 \log (2)+x^2 \log (6-x)+\log (2) \log (6-x)-x \log (4) \log (6-x)\right )} \, dx+(\log (2) (1-\log (4)) \log (4)) \int \frac {1}{x^3 \log (2)+x^2 \log (6-x)+\log (2) \log (6-x)-x \log (4) \log (6-x)} \, dx+\int \frac {x}{x^3 \log (2)+\left (x^2+\log (2)-x \log (4)\right ) \log (6-x)} \, dx\\ &=\frac {2 \log (2) \log \left (x^2+\log (2)-x \log (4)\right )}{\log (4)}-\log (\log (6-x))+\left (6 \left (1-\frac {\log (2)}{3}\right )\right ) \int \frac {1}{x^3 \log (2)+\left (x^2+\log (2)-x \log (4)\right ) \log (6-x)} \, dx+\log (2) \int \frac {x^2}{x^3 \log (2)+\left (x^2+\log (2)-x \log (4)\right ) \log (6-x)} \, dx+(36+\log (2)-6 \log (4)) \int \frac {1}{(-6+x) \left (x^3 \log (2)+\left (x^2+\log (2)-x \log (4)\right ) \log (6-x)\right )} \, dx-(\log (2) \log (4)) \int \frac {x}{x^3 \log (2)+\left (x^2+\log (2)-x \log (4)\right ) \log (6-x)} \, dx+(\log (2) \log (4)) \int \frac {\log (2) (-1+\log (4))+x \left (-\log ^2(4)+\log (8)\right )}{\left (x^2+\log (2)-x \log (4)\right ) \left (x^3 \log (2)+\left (x^2+\log (2)-x \log (4)\right ) \log (6-x)\right )} \, dx+(\log (2) (1-\log (4)) \log (4)) \int \frac {1}{x^3 \log (2)+\left (x^2+\log (2)-x \log (4)\right ) \log (6-x)} \, dx+\int \frac {x}{x^3 \log (2)+\left (x^2+\log (2)-x \log (4)\right ) \log (6-x)} \, dx\\ &=\frac {2 \log (2) \log \left (x^2+\log (2)-x \log (4)\right )}{\log (4)}-\log (\log (6-x))+\left (6 \left (1-\frac {\log (2)}{3}\right )\right ) \int \frac {1}{x^3 \log (2)+\left (x^2+\log (2)-x \log (4)\right ) \log (6-x)} \, dx+\log (2) \int \frac {x^2}{x^3 \log (2)+\left (x^2+\log (2)-x \log (4)\right ) \log (6-x)} \, dx+(36+\log (2)-6 \log (4)) \int \frac {1}{(-6+x) \left (x^3 \log (2)+\left (x^2+\log (2)-x \log (4)\right ) \log (6-x)\right )} \, dx-(\log (2) \log (4)) \int \frac {x}{x^3 \log (2)+\left (x^2+\log (2)-x \log (4)\right ) \log (6-x)} \, dx+(\log (2) \log (4)) \int \left (\frac {\log (2) (-1+\log (4))}{\left (x^2+\log (2)-x \log (4)\right ) \left (x^3 \log (2)+x^2 \log (6-x)+\log (2) \log (6-x)-x \log (4) \log (6-x)\right )}-\frac {x \left (\log ^2(4)-\log (8)\right )}{\left (x^2+\log (2)-x \log (4)\right ) \left (x^3 \log (2)+x^2 \log (6-x)+\log (2) \log (6-x)-x \log (4) \log (6-x)\right )}\right ) \, dx+(\log (2) (1-\log (4)) \log (4)) \int \frac {1}{x^3 \log (2)+\left (x^2+\log (2)-x \log (4)\right ) \log (6-x)} \, dx+\int \frac {x}{x^3 \log (2)+\left (x^2+\log (2)-x \log (4)\right ) \log (6-x)} \, dx\\ &=\frac {2 \log (2) \log \left (x^2+\log (2)-x \log (4)\right )}{\log (4)}-\log (\log (6-x))+\left (6 \left (1-\frac {\log (2)}{3}\right )\right ) \int \frac {1}{x^3 \log (2)+\left (x^2+\log (2)-x \log (4)\right ) \log (6-x)} \, dx+\log (2) \int \frac {x^2}{x^3 \log (2)+\left (x^2+\log (2)-x \log (4)\right ) \log (6-x)} \, dx+(36+\log (2)-6 \log (4)) \int \frac {1}{(-6+x) \left (x^3 \log (2)+\left (x^2+\log (2)-x \log (4)\right ) \log (6-x)\right )} \, dx-(\log (2) \log (4)) \int \frac {x}{x^3 \log (2)+\left (x^2+\log (2)-x \log (4)\right ) \log (6-x)} \, dx+(\log (2) (1-\log (4)) \log (4)) \int \frac {1}{x^3 \log (2)+\left (x^2+\log (2)-x \log (4)\right ) \log (6-x)} \, dx-\left (\log ^2(2) (1-\log (4)) \log (4)\right ) \int \frac {1}{\left (x^2+\log (2)-x \log (4)\right ) \left (x^3 \log (2)+x^2 \log (6-x)+\log (2) \log (6-x)-x \log (4) \log (6-x)\right )} \, dx-\left (\log (2) \log (4) \left (\log ^2(4)-\log (8)\right )\right ) \int \frac {x}{\left (x^2+\log (2)-x \log (4)\right ) \left (x^3 \log (2)+x^2 \log (6-x)+\log (2) \log (6-x)-x \log (4) \log (6-x)\right )} \, dx+\int \frac {x}{x^3 \log (2)+\left (x^2+\log (2)-x \log (4)\right ) \log (6-x)} \, dx\\ &=\frac {2 \log (2) \log \left (x^2+\log (2)-x \log (4)\right )}{\log (4)}-\log (\log (6-x))+\left (6 \left (1-\frac {\log (2)}{3}\right )\right ) \int \frac {1}{x^3 \log (2)+\left (x^2+\log (2)-x \log (4)\right ) \log (6-x)} \, dx+\log (2) \int \frac {x^2}{x^3 \log (2)+\left (x^2+\log (2)-x \log (4)\right ) \log (6-x)} \, dx+(36+\log (2)-6 \log (4)) \int \frac {1}{(-6+x) \left (x^3 \log (2)+\left (x^2+\log (2)-x \log (4)\right ) \log (6-x)\right )} \, dx-(\log (2) \log (4)) \int \frac {x}{x^3 \log (2)+\left (x^2+\log (2)-x \log (4)\right ) \log (6-x)} \, dx+(\log (2) (1-\log (4)) \log (4)) \int \frac {1}{x^3 \log (2)+\left (x^2+\log (2)-x \log (4)\right ) \log (6-x)} \, dx-\left (\log ^2(2) (1-\log (4)) \log (4)\right ) \int \frac {1}{\left (x^2+\log (2)-x \log (4)\right ) \left (x^3 \log (2)+\left (x^2+\log (2)-x \log (4)\right ) \log (6-x)\right )} \, dx-\left (\log (2) \log (4) \left (\log ^2(4)-\log (8)\right )\right ) \int \frac {x}{\left (x^2+\log (2)-x \log (4)\right ) \left (x^3 \log (2)+\left (x^2+\log (2)-x \log (4)\right ) \log (6-x)\right )} \, dx+\int \frac {x}{x^3 \log (2)+\left (x^2+\log (2)-x \log (4)\right ) \log (6-x)} \, dx\\ &=\frac {2 \log (2) \log \left (x^2+\log (2)-x \log (4)\right )}{\log (4)}-\log (\log (6-x))+\left (6 \left (1-\frac {\log (2)}{3}\right )\right ) \int \frac {1}{x^3 \log (2)+\left (x^2+\log (2)-x \log (4)\right ) \log (6-x)} \, dx+\log (2) \int \frac {x^2}{x^3 \log (2)+\left (x^2+\log (2)-x \log (4)\right ) \log (6-x)} \, dx+(36+\log (2)-6 \log (4)) \int \frac {1}{(-6+x) \left (x^3 \log (2)+\left (x^2+\log (2)-x \log (4)\right ) \log (6-x)\right )} \, dx-(\log (2) \log (4)) \int \frac {x}{x^3 \log (2)+\left (x^2+\log (2)-x \log (4)\right ) \log (6-x)} \, dx+(\log (2) (1-\log (4)) \log (4)) \int \frac {1}{x^3 \log (2)+\left (x^2+\log (2)-x \log (4)\right ) \log (6-x)} \, dx-\left (\log ^2(2) (1-\log (4)) \log (4)\right ) \int \left (\frac {2 i}{\sqrt {4 \log (2)-\log ^2(4)} \left (2 x-\log (4)+i \sqrt {4 \log (2)-\log ^2(4)}\right ) \left (x^3 \log (2)+\left (x^2+\log (2)-x \log (4)\right ) \log (6-x)\right )}+\frac {2 i}{\sqrt {4 \log (2)-\log ^2(4)} \left (-2 x+\log (4)+i \sqrt {4 \log (2)-\log ^2(4)}\right ) \left (x^3 \log (2)+\left (x^2+\log (2)-x \log (4)\right ) \log (6-x)\right )}\right ) \, dx-\left (\log (2) \log (4) \left (\log ^2(4)-\log (8)\right )\right ) \int \left (\frac {1-\frac {i \log (4)}{\sqrt {-\log ^2(4)+\log (16)}}}{\left (2 x-\log (4)-i \sqrt {4 \log (2)-\log ^2(4)}\right ) \left (x^3 \log (2)+\left (x^2+\log (2)-x \log (4)\right ) \log (6-x)\right )}+\frac {1+\frac {i \log (4)}{\sqrt {-\log ^2(4)+\log (16)}}}{\left (2 x-\log (4)+i \sqrt {4 \log (2)-\log ^2(4)}\right ) \left (x^3 \log (2)+\left (x^2+\log (2)-x \log (4)\right ) \log (6-x)\right )}\right ) \, dx+\int \frac {x}{x^3 \log (2)+\left (x^2+\log (2)-x \log (4)\right ) \log (6-x)} \, dx\\ &=\frac {2 \log (2) \log \left (x^2+\log (2)-x \log (4)\right )}{\log (4)}-\log (\log (6-x))+\left (6 \left (1-\frac {\log (2)}{3}\right )\right ) \int \frac {1}{x^3 \log (2)+\left (x^2+\log (2)-x \log (4)\right ) \log (6-x)} \, dx+\log (2) \int \frac {x^2}{x^3 \log (2)+\left (x^2+\log (2)-x \log (4)\right ) \log (6-x)} \, dx+(36+\log (2)-6 \log (4)) \int \frac {1}{(-6+x) \left (x^3 \log (2)+\left (x^2+\log (2)-x \log (4)\right ) \log (6-x)\right )} \, dx-(\log (2) \log (4)) \int \frac {x}{x^3 \log (2)+\left (x^2+\log (2)-x \log (4)\right ) \log (6-x)} \, dx+(\log (2) (1-\log (4)) \log (4)) \int \frac {1}{x^3 \log (2)+\left (x^2+\log (2)-x \log (4)\right ) \log (6-x)} \, dx-\frac {\left (2 i \log ^2(2) (1-\log (4)) \log (4)\right ) \int \frac {1}{\left (2 x-\log (4)+i \sqrt {4 \log (2)-\log ^2(4)}\right ) \left (x^3 \log (2)+\left (x^2+\log (2)-x \log (4)\right ) \log (6-x)\right )} \, dx}{\sqrt {-\log ^2(4)+\log (16)}}-\frac {\left (2 i \log ^2(2) (1-\log (4)) \log (4)\right ) \int \frac {1}{\left (-2 x+\log (4)+i \sqrt {4 \log (2)-\log ^2(4)}\right ) \left (x^3 \log (2)+\left (x^2+\log (2)-x \log (4)\right ) \log (6-x)\right )} \, dx}{\sqrt {-\log ^2(4)+\log (16)}}-\left (\log (2) \log (4) \left (\log ^2(4)-\log (8)\right ) \left (1-\frac {i \log (4)}{\sqrt {-\log ^2(4)+\log (16)}}\right )\right ) \int \frac {1}{\left (2 x-\log (4)-i \sqrt {4 \log (2)-\log ^2(4)}\right ) \left (x^3 \log (2)+\left (x^2+\log (2)-x \log (4)\right ) \log (6-x)\right )} \, dx-\left (\log (2) \log (4) \left (\log ^2(4)-\log (8)\right ) \left (1+\frac {i \log (4)}{\sqrt {-\log ^2(4)+\log (16)}}\right )\right ) \int \frac {1}{\left (2 x-\log (4)+i \sqrt {4 \log (2)-\log ^2(4)}\right ) \left (x^3 \log (2)+\left (x^2+\log (2)-x \log (4)\right ) \log (6-x)\right )} \, dx+\int \frac {x}{x^3 \log (2)+\left (x^2+\log (2)-x \log (4)\right ) \log (6-x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 0.86, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^3 \log (2)+\left (18 x^2-3 x^3\right ) \log (2) \log (6-x)+\left (12 x-2 x^2+(-12+2 x) \log (2)\right ) \log ^2(6-x)}{\left (6 x^3-x^4\right ) \log (2) \log (6-x)+\left (6 x^2-x^3+\left (6-13 x+2 x^2\right ) \log (2)\right ) \log ^2(6-x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.59, size = 69, normalized size = 2.30 \begin {gather*} \log \left (x^{2} - {\left (2 \, x - 1\right )} \log \relax (2)\right ) + \log \left (-\frac {x^{3} \log \relax (2) + {\left (x^{2} - {\left (2 \, x - 1\right )} \log \relax (2)\right )} \log \left (-x + 6\right )}{x^{2} - {\left (2 \, x - 1\right )} \log \relax (2)}\right ) - \log \left (\log \left (-x + 6\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.50, size = 48, normalized size = 1.60 \begin {gather*} \log \left (x^{3} \log \relax (2) + x^{2} \log \left (-x + 6\right ) - 2 \, x \log \relax (2) \log \left (-x + 6\right ) + \log \relax (2) \log \left (-x + 6\right )\right ) - \log \left (\log \left (-x + 6\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.33, size = 49, normalized size = 1.63
method | result | size |
norman | \(-\ln \left (\ln \left (-x +6\right )\right )+\ln \left (x^{3} \ln \relax (2)-2 \ln \relax (2) \ln \left (-x +6\right ) x +\ln \left (-x +6\right ) x^{2}+\ln \relax (2) \ln \left (-x +6\right )\right )\) | \(49\) |
risch | \(\ln \left (-2 x \ln \relax (2)+x^{2}+\ln \relax (2)\right )-\ln \left (\ln \left (-x +6\right )\right )+\ln \left (\ln \left (-x +6\right )-\frac {x^{3} \ln \relax (2)}{2 x \ln \relax (2)-x^{2}-\ln \relax (2)}\right )\) | \(55\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.97, size = 62, normalized size = 2.07 \begin {gather*} \log \left (x^{2} - 2 \, x \log \relax (2) + \log \relax (2)\right ) + \log \left (\frac {x^{3} \log \relax (2) + {\left (x^{2} - 2 \, x \log \relax (2) + \log \relax (2)\right )} \log \left (-x + 6\right )}{x^{2} - 2 \, x \log \relax (2) + \log \relax (2)}\right ) - \log \left (\log \left (-x + 6\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {x^3\,\ln \relax (2)+{\ln \left (6-x\right )}^2\,\left (12\,x+\ln \relax (2)\,\left (2\,x-12\right )-2\,x^2\right )+\ln \relax (2)\,\ln \left (6-x\right )\,\left (18\,x^2-3\,x^3\right )}{\left (\ln \relax (2)\,\left (2\,x^2-13\,x+6\right )+6\,x^2-x^3\right )\,{\ln \left (6-x\right )}^2+\ln \relax (2)\,\left (6\,x^3-x^4\right )\,\ln \left (6-x\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: PolynomialError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________