Optimal. Leaf size=21 \[ \frac {e^{-4 x} \log ^2\left (x^2\right )}{x^2 (-2+\log (2))^2} \]
________________________________________________________________________________________
Rubi [A] time = 0.18, antiderivative size = 23, normalized size of antiderivative = 1.10, number of steps used = 6, number of rules used = 4, integrand size = 48, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.083, Rules used = {6, 12, 6741, 2288} \begin {gather*} \frac {e^{-4 x} \log ^2\left (x^2\right )}{x^2 (2-\log (2))^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 2288
Rule 6741
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-4 x} \left (4 \log \left (x^2\right )+(-2-4 x) \log ^2\left (x^2\right )\right )}{x^3 (4-4 \log (2))+x^3 \log ^2(2)} \, dx\\ &=\int \frac {e^{-4 x} \left (4 \log \left (x^2\right )+(-2-4 x) \log ^2\left (x^2\right )\right )}{x^3 \left (4-4 \log (2)+\log ^2(2)\right )} \, dx\\ &=\frac {\int \frac {e^{-4 x} \left (4 \log \left (x^2\right )+(-2-4 x) \log ^2\left (x^2\right )\right )}{x^3} \, dx}{4-4 \log (2)+\log ^2(2)}\\ &=\frac {\int \frac {2 e^{-4 x} \log \left (x^2\right ) \left (2-\log \left (x^2\right )-2 x \log \left (x^2\right )\right )}{x^3} \, dx}{4-4 \log (2)+\log ^2(2)}\\ &=\frac {2 \int \frac {e^{-4 x} \log \left (x^2\right ) \left (2-\log \left (x^2\right )-2 x \log \left (x^2\right )\right )}{x^3} \, dx}{(2-\log (2))^2}\\ &=\frac {e^{-4 x} \log ^2\left (x^2\right )}{x^2 (2-\log (2))^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 21, normalized size = 1.00 \begin {gather*} \frac {e^{-4 x} \log ^2\left (x^2\right )}{x^2 (-2+\log (2))^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.66, size = 34, normalized size = 1.62 \begin {gather*} \frac {e^{\left (-4 \, x\right )} \log \left (x^{2}\right )^{2}}{x^{2} \log \relax (2)^{2} - 4 \, x^{2} \log \relax (2) + 4 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.25, size = 34, normalized size = 1.62 \begin {gather*} \frac {e^{\left (-4 \, x\right )} \log \left (x^{2}\right )^{2}}{x^{2} \log \relax (2)^{2} - 4 \, x^{2} \log \relax (2) + 4 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.14, size = 190, normalized size = 9.05
method | result | size |
risch | \(\frac {4 \,{\mathrm e}^{-4 x} \ln \relax (x )^{2}}{x^{2} \left (\ln \relax (2)^{2}-4 \ln \relax (2)+4\right )}-\frac {2 i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \left (\mathrm {csgn}\left (i x \right )^{2}-2 \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x \right )+\mathrm {csgn}\left (i x^{2}\right )^{2}\right ) {\mathrm e}^{-4 x} \ln \relax (x )}{x^{2} \left (\ln \relax (2)^{2}-4 \ln \relax (2)+4\right )}-\frac {\pi ^{2} \mathrm {csgn}\left (i x^{2}\right )^{2} \left (\mathrm {csgn}\left (i x \right )^{4}-4 \mathrm {csgn}\left (i x \right )^{3} \mathrm {csgn}\left (i x^{2}\right )+6 \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )^{2}-4 \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{3}+\mathrm {csgn}\left (i x^{2}\right )^{4}\right ) {\mathrm e}^{-4 x}}{4 x^{2} \left (\ln \relax (2)^{2}-4 \ln \relax (2)+4\right )}\) | \(190\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.64, size = 25, normalized size = 1.19 \begin {gather*} \frac {4 \, e^{\left (-4 \, x\right )} \log \relax (x)^{2}}{{\left (\log \relax (2)^{2} - 4 \, \log \relax (2) + 4\right )} x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.69, size = 20, normalized size = 0.95 \begin {gather*} \frac {{\ln \left (x^2\right )}^2\,{\mathrm {e}}^{-4\,x}}{x^2\,{\left (\ln \relax (2)-2\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.32, size = 32, normalized size = 1.52 \begin {gather*} \frac {e^{- 4 x} \log {\left (x^{2} \right )}^{2}}{- 4 x^{2} \log {\relax (2 )} + x^{2} \log {\relax (2 )}^{2} + 4 x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________