Optimal. Leaf size=20 \[ -4+\left (1-e^x\right )^2+\left (\frac {1}{x}\right )^{2 e^2} \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 20, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 4, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.121, Rules used = {14, 2246, 15, 30} \begin {gather*} \left (\frac {1}{x}\right )^{2 e^2}-2 e^x+e^{2 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 15
Rule 30
Rule 2246
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (2 e^x \left (-1+e^x\right )-2 e^2 \left (\frac {1}{x}\right )^{1+2 e^2}\right ) \, dx\\ &=2 \int e^x \left (-1+e^x\right ) \, dx-\left (2 e^2\right ) \int \left (\frac {1}{x}\right )^{1+2 e^2} \, dx\\ &=2 \operatorname {Subst}\left (\int (-1+x) \, dx,x,e^x\right )-\left (2 e^2 \left (\frac {1}{x}\right )^{2 e^2} x^{2 e^2}\right ) \int x^{-1-2 e^2} \, dx\\ &=-2 e^x+e^{2 x}+\left (\frac {1}{x}\right )^{2 e^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 20, normalized size = 1.00 \begin {gather*} -2 e^x+e^{2 x}+\left (\frac {1}{x}\right )^{2 e^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.48, size = 17, normalized size = 0.85 \begin {gather*} \frac {1}{x}^{2 \, e^{2}} + e^{\left (2 \, x\right )} - 2 \, e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {2 \, {\left (\frac {1}{x}^{2 \, e^{2}} e^{2} - x e^{\left (2 \, x\right )} + x e^{x}\right )}}{x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 16, normalized size = 0.80
method | result | size |
risch | \({\mathrm e}^{2 x}-2 \,{\mathrm e}^{x}+x^{-2 \,{\mathrm e}^{2}}\) | \(16\) |
derivativedivides | \({\mathrm e}^{2 x}+{\mathrm e}^{2 \,{\mathrm e}^{2} \ln \left (\frac {1}{x}\right )}-2 \,{\mathrm e}^{x}\) | \(19\) |
default | \({\mathrm e}^{2 x}+{\mathrm e}^{2 \,{\mathrm e}^{2} \ln \left (\frac {1}{x}\right )}-2 \,{\mathrm e}^{x}\) | \(19\) |
norman | \({\mathrm e}^{2 x}+{\mathrm e}^{2 \,{\mathrm e}^{2} \ln \left (\frac {1}{x}\right )}-2 \,{\mathrm e}^{x}\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 17, normalized size = 0.85 \begin {gather*} \frac {1}{x^{2 \, e^{2}}} + e^{\left (2 \, x\right )} - 2 \, e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.52, size = 17, normalized size = 0.85 \begin {gather*} {\mathrm {e}}^{2\,x}-2\,{\mathrm {e}}^x+{\left (\frac {1}{x}\right )}^{2\,{\mathrm {e}}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.80, size = 17, normalized size = 0.85 \begin {gather*} \left (\frac {1}{x}\right )^{2 e^{2}} + e^{2 x} - 2 e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________