Optimal. Leaf size=28 \[ 12 \left (x+(5+x)^2-\left (\frac {3}{-5+\frac {5}{x}}+x\right )^2\right ) \log (3) \]
________________________________________________________________________________________
Rubi [A] time = 0.04, antiderivative size = 34, normalized size of antiderivative = 1.21, number of steps used = 3, number of rules used = 2, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.057, Rules used = {12, 2074} \begin {gather*} \frac {732}{5} x \log (3)-\frac {144 \log (3)}{25 (1-x)}-\frac {108 \log (3)}{25 (1-x)^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2074
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\log (3) \int \frac {-3300+10836 x-10980 x^2+3660 x^3}{-25+75 x-75 x^2+25 x^3} \, dx\\ &=\log (3) \int \left (\frac {732}{5}+\frac {216}{25 (-1+x)^3}-\frac {144}{25 (-1+x)^2}\right ) \, dx\\ &=-\frac {108 \log (3)}{25 (1-x)^2}-\frac {144 \log (3)}{25 (1-x)}+\frac {732}{5} x \log (3)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 26, normalized size = 0.93 \begin {gather*} \frac {12}{25} \left (-\frac {9}{(-1+x)^2}+\frac {12}{-1+x}+305 (-1+x)\right ) \log (3) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.48, size = 29, normalized size = 1.04 \begin {gather*} \frac {12 \, {\left (305 \, x^{3} - 610 \, x^{2} + 317 \, x - 21\right )} \log \relax (3)}{25 \, {\left (x^{2} - 2 \, x + 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.27, size = 20, normalized size = 0.71 \begin {gather*} \frac {12}{25} \, {\left (305 \, x + \frac {3 \, {\left (4 \, x - 7\right )}}{{\left (x - 1\right )}^{2}}\right )} \log \relax (3) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 23, normalized size = 0.82
method | result | size |
default | \(\frac {12 \ln \relax (3) \left (305 x +\frac {12}{x -1}-\frac {9}{\left (x -1\right )^{2}}\right )}{25}\) | \(23\) |
norman | \(\frac {-\frac {10836 x \ln \relax (3)}{25}+\frac {732 x^{3} \ln \relax (3)}{5}+\frac {7068 \ln \relax (3)}{25}}{\left (x -1\right )^{2}}\) | \(24\) |
gosper | \(\frac {12 \left (305 x^{3}-903 x +589\right ) \ln \relax (3)}{25 \left (x^{2}-2 x +1\right )}\) | \(25\) |
risch | \(\frac {732 x \ln \relax (3)}{5}+\frac {\ln \relax (3) \left (\frac {144 x}{25}-\frac {252}{25}\right )}{x^{2}-2 x +1}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 25, normalized size = 0.89 \begin {gather*} \frac {12}{25} \, {\left (305 \, x + \frac {3 \, {\left (4 \, x - 7\right )}}{x^{2} - 2 \, x + 1}\right )} \log \relax (3) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.09, size = 23, normalized size = 0.82 \begin {gather*} \frac {732\,x\,\ln \relax (3)}{5}-\frac {\frac {252\,\ln \relax (3)}{25}-\frac {144\,x\,\ln \relax (3)}{25}}{{\left (x-1\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 29, normalized size = 1.04 \begin {gather*} \frac {732 x \log {\relax (3 )}}{5} + \frac {144 x \log {\relax (3 )} - 252 \log {\relax (3 )}}{25 x^{2} - 50 x + 25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________