Optimal. Leaf size=26 \[ \frac {4}{16+\frac {2}{x^2 \left (x^2-(3+x) \log (1+x)\right )}} \]
________________________________________________________________________________________
Rubi [F] time = 4.13, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-6 x^2+6 x^3+8 x^4+\left (-12 x-18 x^2-6 x^3\right ) \log (1+x)}{1+x+16 x^4+16 x^5+64 x^8+64 x^9+\left (-48 x^2-64 x^3-16 x^4-384 x^6-512 x^7-128 x^8\right ) \log (1+x)+\left (576 x^4+960 x^5+448 x^6+64 x^7\right ) \log ^2(1+x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 x \left (x \left (-3+3 x+4 x^2\right )-3 \left (2+3 x+x^2\right ) \log (1+x)\right )}{(1+x) \left (1+8 x^4-8 x^2 (3+x) \log (1+x)\right )^2} \, dx\\ &=2 \int \frac {x \left (x \left (-3+3 x+4 x^2\right )-3 \left (2+3 x+x^2\right ) \log (1+x)\right )}{(1+x) \left (1+8 x^4-8 x^2 (3+x) \log (1+x)\right )^2} \, dx\\ &=2 \int \left (\frac {-6-9 x-3 x^2-72 x^3+48 x^5+8 x^6}{8 x (1+x) (3+x) \left (1+8 x^4-24 x^2 \log (1+x)-8 x^3 \log (1+x)\right )^2}+\frac {3 (2+x)}{8 x (3+x) \left (1+8 x^4-24 x^2 \log (1+x)-8 x^3 \log (1+x)\right )}\right ) \, dx\\ &=\frac {1}{4} \int \frac {-6-9 x-3 x^2-72 x^3+48 x^5+8 x^6}{x (1+x) (3+x) \left (1+8 x^4-24 x^2 \log (1+x)-8 x^3 \log (1+x)\right )^2} \, dx+\frac {3}{4} \int \frac {2+x}{x (3+x) \left (1+8 x^4-24 x^2 \log (1+x)-8 x^3 \log (1+x)\right )} \, dx\\ &=\frac {1}{4} \int \left (\frac {232}{\left (1+8 x^4-24 x^2 \log (1+x)-8 x^3 \log (1+x)\right )^2}-\frac {2}{x \left (1+8 x^4-24 x^2 \log (1+x)-8 x^3 \log (1+x)\right )^2}-\frac {88 x}{\left (1+8 x^4-24 x^2 \log (1+x)-8 x^3 \log (1+x)\right )^2}+\frac {16 x^2}{\left (1+8 x^4-24 x^2 \log (1+x)-8 x^3 \log (1+x)\right )^2}+\frac {8 x^3}{\left (1+8 x^4-24 x^2 \log (1+x)-8 x^3 \log (1+x)\right )^2}-\frac {16}{(1+x) \left (1+8 x^4-24 x^2 \log (1+x)-8 x^3 \log (1+x)\right )^2}-\frac {649}{(3+x) \left (1+8 x^4-24 x^2 \log (1+x)-8 x^3 \log (1+x)\right )^2}\right ) \, dx+\frac {3}{4} \int \left (\frac {2}{3 x \left (1+8 x^4-24 x^2 \log (1+x)-8 x^3 \log (1+x)\right )}+\frac {1}{3 (3+x) \left (1+8 x^4-24 x^2 \log (1+x)-8 x^3 \log (1+x)\right )}\right ) \, dx\\ &=\frac {1}{4} \int \frac {1}{(3+x) \left (1+8 x^4-24 x^2 \log (1+x)-8 x^3 \log (1+x)\right )} \, dx-\frac {1}{2} \int \frac {1}{x \left (1+8 x^4-24 x^2 \log (1+x)-8 x^3 \log (1+x)\right )^2} \, dx+\frac {1}{2} \int \frac {1}{x \left (1+8 x^4-24 x^2 \log (1+x)-8 x^3 \log (1+x)\right )} \, dx+2 \int \frac {x^3}{\left (1+8 x^4-24 x^2 \log (1+x)-8 x^3 \log (1+x)\right )^2} \, dx+4 \int \frac {x^2}{\left (1+8 x^4-24 x^2 \log (1+x)-8 x^3 \log (1+x)\right )^2} \, dx-4 \int \frac {1}{(1+x) \left (1+8 x^4-24 x^2 \log (1+x)-8 x^3 \log (1+x)\right )^2} \, dx-22 \int \frac {x}{\left (1+8 x^4-24 x^2 \log (1+x)-8 x^3 \log (1+x)\right )^2} \, dx+58 \int \frac {1}{\left (1+8 x^4-24 x^2 \log (1+x)-8 x^3 \log (1+x)\right )^2} \, dx-\frac {649}{4} \int \frac {1}{(3+x) \left (1+8 x^4-24 x^2 \log (1+x)-8 x^3 \log (1+x)\right )^2} \, dx\\ &=\frac {1}{4} \int \frac {1}{(3+x) \left (1+8 x^4-24 x^2 \log (1+x)-8 x^3 \log (1+x)\right )} \, dx-\frac {1}{2} \int \frac {1}{x \left (1+8 x^4-24 x^2 \log (1+x)-8 x^3 \log (1+x)\right )^2} \, dx+\frac {1}{2} \int \frac {1}{x+8 x^5-8 x^3 (3+x) \log (1+x)} \, dx+2 \int \frac {x^3}{\left (1+8 x^4-24 x^2 \log (1+x)-8 x^3 \log (1+x)\right )^2} \, dx+4 \int \frac {x^2}{\left (1+8 x^4-24 x^2 \log (1+x)-8 x^3 \log (1+x)\right )^2} \, dx-4 \int \frac {1}{(1+x) \left (1+8 x^4-24 x^2 \log (1+x)-8 x^3 \log (1+x)\right )^2} \, dx-22 \int \frac {x}{\left (1+8 x^4-24 x^2 \log (1+x)-8 x^3 \log (1+x)\right )^2} \, dx+58 \int \frac {1}{\left (1+8 x^4-24 x^2 \log (1+x)-8 x^3 \log (1+x)\right )^2} \, dx-\frac {649}{4} \int \frac {1}{(3+x) \left (1+8 x^4-24 x^2 \log (1+x)-8 x^3 \log (1+x)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.98, size = 25, normalized size = 0.96 \begin {gather*} -\frac {1}{4 \left (1+8 x^4-8 x^2 (3+x) \log (1+x)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.52, size = 26, normalized size = 1.00 \begin {gather*} -\frac {1}{4 \, {\left (8 \, x^{4} - 8 \, {\left (x^{3} + 3 \, x^{2}\right )} \log \left (x + 1\right ) + 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.27, size = 29, normalized size = 1.12 \begin {gather*} -\frac {1}{4 \, {\left (8 \, x^{4} - 8 \, x^{3} \log \left (x + 1\right ) - 24 \, x^{2} \log \left (x + 1\right ) + 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 30, normalized size = 1.15
method | result | size |
risch | \(-\frac {1}{4 \left (8 x^{4}-8 \ln \left (x +1\right ) x^{3}-24 \ln \left (x +1\right ) x^{2}+1\right )}\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.47, size = 26, normalized size = 1.00 \begin {gather*} -\frac {1}{4 \, {\left (8 \, x^{4} - 8 \, {\left (x^{3} + 3 \, x^{2}\right )} \log \left (x + 1\right ) + 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int -\frac {\ln \left (x+1\right )\,\left (6\,x^3+18\,x^2+12\,x\right )+6\,x^2-6\,x^3-8\,x^4}{x+{\ln \left (x+1\right )}^2\,\left (64\,x^7+448\,x^6+960\,x^5+576\,x^4\right )-\ln \left (x+1\right )\,\left (128\,x^8+512\,x^7+384\,x^6+16\,x^4+64\,x^3+48\,x^2\right )+16\,x^4+16\,x^5+64\,x^8+64\,x^9+1} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.27, size = 22, normalized size = 0.85 \begin {gather*} \frac {1}{- 32 x^{4} + \left (32 x^{3} + 96 x^{2}\right ) \log {\left (x + 1 \right )} - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________