Optimal. Leaf size=31 \[ \frac {e^{\frac {1}{5} \log (1+x) \log (25-x+\log (5))}}{-2+\log \left (2-\frac {x}{2}\right )} \]
________________________________________________________________________________________
Rubi [B] time = 0.65, antiderivative size = 255, normalized size of antiderivative = 8.23, number of steps used = 1, number of rules used = 1, integrand size = 237, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.004, Rules used = {2288} \begin {gather*} -\frac {e^{\frac {1}{5} \log (x+1) \log (-x+25+\log (5))} \left (\left (-2 x^2-\left (-x^2+3 x+4\right ) \log \left (\frac {4-x}{2}\right )+6 x+8\right ) \log (x+1)-\left (2 x^2-\left (x^2-29 x+(4-x) \log (5)+100\right ) \log \left (\frac {4-x}{2}\right )-58 x+2 (4-x) \log (5)+200\right ) \log (-x+25+\log (5))\right )}{\left (4 x^3-112 x^2+4 \left (-x^2+3 x+4\right ) \log (5)+\left (x^3-28 x^2+\left (-x^2+3 x+4\right ) \log (5)+71 x+100\right ) \log ^2\left (\frac {4-x}{2}\right )-4 \left (x^3-28 x^2+\left (-x^2+3 x+4\right ) \log (5)+71 x+100\right ) \log \left (\frac {4-x}{2}\right )+284 x+400\right ) \left (\frac {\log (x+1)}{-x+25+\log (5)}-\frac {\log (-x+25+\log (5))}{x+1}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-\frac {e^{\frac {1}{5} \log (1+x) \log (25-x+\log (5))} \left (\left (8+6 x-2 x^2-\left (4+3 x-x^2\right ) \log \left (\frac {4-x}{2}\right )\right ) \log (1+x)-\left (200-58 x+2 x^2+2 (4-x) \log (5)-\left (100-29 x+x^2+(4-x) \log (5)\right ) \log \left (\frac {4-x}{2}\right )\right ) \log (25-x+\log (5))\right )}{\left (400+284 x-112 x^2+4 x^3+4 \left (4+3 x-x^2\right ) \log (5)-4 \left (100+71 x-28 x^2+x^3+\left (4+3 x-x^2\right ) \log (5)\right ) \log \left (\frac {4-x}{2}\right )+\left (100+71 x-28 x^2+x^3+\left (4+3 x-x^2\right ) \log (5)\right ) \log ^2\left (\frac {4-x}{2}\right )\right ) \left (\frac {\log (1+x)}{25-x+\log (5)}-\frac {\log (25-x+\log (5))}{1+x}\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 0.33, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {e^{\frac {1}{5} \log (1+x) \log (25-x+\log (5))} \left (-125-120 x+5 x^2+(-5-5 x) \log (5)+\left (-8-6 x+2 x^2+\left (4+3 x-x^2\right ) \log \left (\frac {4-x}{2}\right )\right ) \log (1+x)+\left (200-58 x+2 x^2+(8-2 x) \log (5)+\left (-100+29 x-x^2+(-4+x) \log (5)\right ) \log \left (\frac {4-x}{2}\right )\right ) \log (25-x+\log (5))\right )}{-2000-1420 x+560 x^2-20 x^3+\left (-80-60 x+20 x^2\right ) \log (5)+\left (2000+1420 x-560 x^2+20 x^3+\left (80+60 x-20 x^2\right ) \log (5)\right ) \log \left (\frac {4-x}{2}\right )+\left (-500-355 x+140 x^2-5 x^3+\left (-20-15 x+5 x^2\right ) \log (5)\right ) \log ^2\left (\frac {4-x}{2}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.11, size = 26, normalized size = 0.84 \begin {gather*} \frac {e^{\left (\frac {1}{5} \, \log \left (x + 1\right ) \log \left (-x + \log \relax (5) + 25\right )\right )}}{\log \left (-\frac {1}{2} \, x + 2\right ) - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {{\left (5 \, x^{2} - 5 \, {\left (x + 1\right )} \log \relax (5) + {\left (2 \, x^{2} - {\left (x^{2} - 3 \, x - 4\right )} \log \left (-\frac {1}{2} \, x + 2\right ) - 6 \, x - 8\right )} \log \left (x + 1\right ) + {\left (2 \, x^{2} - 2 \, {\left (x - 4\right )} \log \relax (5) - {\left (x^{2} - {\left (x - 4\right )} \log \relax (5) - 29 \, x + 100\right )} \log \left (-\frac {1}{2} \, x + 2\right ) - 58 \, x + 200\right )} \log \left (-x + \log \relax (5) + 25\right ) - 120 \, x - 125\right )} e^{\left (\frac {1}{5} \, \log \left (x + 1\right ) \log \left (-x + \log \relax (5) + 25\right )\right )}}{5 \, {\left (4 \, x^{3} + {\left (x^{3} - 28 \, x^{2} - {\left (x^{2} - 3 \, x - 4\right )} \log \relax (5) + 71 \, x + 100\right )} \log \left (-\frac {1}{2} \, x + 2\right )^{2} - 112 \, x^{2} - 4 \, {\left (x^{2} - 3 \, x - 4\right )} \log \relax (5) - 4 \, {\left (x^{3} - 28 \, x^{2} - {\left (x^{2} - 3 \, x - 4\right )} \log \relax (5) + 71 \, x + 100\right )} \log \left (-\frac {1}{2} \, x + 2\right ) + 284 \, x + 400\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 26, normalized size = 0.84
method | result | size |
risch | \(\frac {\left (\ln \relax (5)-x +25\right )^{\frac {\ln \left (x +1\right )}{5}}}{\ln \left (2-\frac {x}{2}\right )-2}\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.66, size = 31, normalized size = 1.00 \begin {gather*} -\frac {e^{\left (\frac {1}{5} \, \log \left (x + 1\right ) \log \left (-x + \log \relax (5) + 25\right )\right )}}{\log \relax (2) - \log \left (-x + 4\right ) + 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.60, size = 25, normalized size = 0.81 \begin {gather*} \frac {{\left (x+1\right )}^{\frac {\ln \left (\ln \relax (5)-x+25\right )}{5}}}{\ln \left (2-\frac {x}{2}\right )-2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.96, size = 24, normalized size = 0.77 \begin {gather*} \frac {e^{\frac {\log {\left (x + 1 \right )} \log {\left (- x + \log {\relax (5 )} + 25 \right )}}{5}}}{\log {\left (2 - \frac {x}{2} \right )} - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________