Optimal. Leaf size=20 \[ 1+e^4+e^x-\frac {1}{5-x}-x \]
________________________________________________________________________________________
Rubi [A] time = 0.09, antiderivative size = 12, normalized size of antiderivative = 0.60, number of steps used = 6, number of rules used = 4, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.121, Rules used = {27, 6742, 2194, 683} \begin {gather*} -x+e^x+\frac {1}{x-5} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 27
Rule 683
Rule 2194
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-26+10 x-x^2+e^x \left (25-10 x+x^2\right )}{(-5+x)^2} \, dx\\ &=\int \left (e^x+\frac {-26+10 x-x^2}{(-5+x)^2}\right ) \, dx\\ &=\int e^x \, dx+\int \frac {-26+10 x-x^2}{(-5+x)^2} \, dx\\ &=e^x+\int \left (-1-\frac {1}{(-5+x)^2}\right ) \, dx\\ &=e^x+\frac {1}{-5+x}-x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 12, normalized size = 0.60 \begin {gather*} e^x+\frac {1}{-5+x}-x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.49, size = 22, normalized size = 1.10 \begin {gather*} -\frac {x^{2} - {\left (x - 5\right )} e^{x} - 5 \, x - 1}{x - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.56, size = 24, normalized size = 1.20 \begin {gather*} -\frac {x^{2} - x e^{x} - 5 \, x + 5 \, e^{x} - 1}{x - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.44, size = 12, normalized size = 0.60
method | result | size |
default | \({\mathrm e}^{x}+\frac {1}{x -5}-x\) | \(12\) |
risch | \({\mathrm e}^{x}+\frac {1}{x -5}-x\) | \(12\) |
norman | \(\frac {{\mathrm e}^{x} x -x^{2}-5 \,{\mathrm e}^{x}+26}{x -5}\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -x + \frac {{\left (x^{2} - 10 \, x\right )} e^{x}}{x^{2} - 10 \, x + 25} - \frac {25 \, e^{5} E_{2}\left (-x + 5\right )}{x - 5} + \frac {1}{x - 5} - 50 \, \int \frac {e^{x}}{x^{3} - 15 \, x^{2} + 75 \, x - 125}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.10, size = 11, normalized size = 0.55 \begin {gather*} {\mathrm {e}}^x-x+\frac {1}{x-5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 8, normalized size = 0.40 \begin {gather*} - x + e^{x} + \frac {1}{x - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________