Optimal. Leaf size=28 \[ e^2-\frac {2}{x-\frac {4}{2-\frac {e^5}{2}+4 x^4}} \]
________________________________________________________________________________________
Rubi [F] time = 0.42, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {32+2 e^{10}+512 x^3+128 x^4+128 x^8+e^5 \left (-16-32 x^4\right )}{64-64 x+16 x^2+e^{10} x^2-128 x^5+64 x^6+64 x^{10}+e^5 \left (16 x-8 x^2-16 x^6\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {32+2 e^{10}+512 x^3+128 x^4+128 x^8+e^5 \left (-16-32 x^4\right )}{64-64 x+\left (16+e^{10}\right ) x^2-128 x^5+64 x^6+64 x^{10}+e^5 \left (16 x-8 x^2-16 x^6\right )} \, dx\\ &=\int \left (\frac {2 \left (\left (-4+e^5\right )^2+320 x^3+8 \left (4-e^5\right ) x^4\right )}{\left (8-4 \left (1-\frac {e^5}{4}\right ) x-8 x^5\right )^2}+\frac {16 x^3}{-8+4 \left (1-\frac {e^5}{4}\right ) x+8 x^5}\right ) \, dx\\ &=2 \int \frac {\left (-4+e^5\right )^2+320 x^3+8 \left (4-e^5\right ) x^4}{\left (8-4 \left (1-\frac {e^5}{4}\right ) x-8 x^5\right )^2} \, dx+16 \int \frac {x^3}{-8+4 \left (1-\frac {e^5}{4}\right ) x+8 x^5} \, dx\\ &=\frac {2 \left (4-e^5\right )}{5 \left (8-\left (4-e^5\right ) x-8 x^5\right )}-\frac {1}{20} \int \frac {-32 \left (4-e^5\right )^2-12800 x^3}{\left (8-4 \left (1-\frac {e^5}{4}\right ) x-8 x^5\right )^2} \, dx+16 \int \frac {x^3}{-8+4 \left (1-\frac {e^5}{4}\right ) x+8 x^5} \, dx\\ &=\frac {2 \left (4-e^5\right )}{5 \left (8-\left (4-e^5\right ) x-8 x^5\right )}-\frac {1}{20} \int \left (-\frac {32 \left (4-e^5\right )^2}{\left (8-4 \left (1-\frac {e^5}{4}\right ) x-8 x^5\right )^2}-\frac {12800 x^3}{\left (8-4 \left (1-\frac {e^5}{4}\right ) x-8 x^5\right )^2}\right ) \, dx+16 \int \frac {x^3}{-8+4 \left (1-\frac {e^5}{4}\right ) x+8 x^5} \, dx\\ &=\frac {2 \left (4-e^5\right )}{5 \left (8-\left (4-e^5\right ) x-8 x^5\right )}+16 \int \frac {x^3}{-8+4 \left (1-\frac {e^5}{4}\right ) x+8 x^5} \, dx+640 \int \frac {x^3}{\left (8-4 \left (1-\frac {e^5}{4}\right ) x-8 x^5\right )^2} \, dx+\frac {1}{5} \left (8 \left (4-e^5\right )^2\right ) \int \frac {1}{\left (8-4 \left (1-\frac {e^5}{4}\right ) x-8 x^5\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 30, normalized size = 1.07 \begin {gather*} \frac {2 \left (-4+e^5-8 x^4\right )}{-8+4 x-e^5 x+8 x^5} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 30, normalized size = 1.07 \begin {gather*} -\frac {2 \, {\left (8 \, x^{4} - e^{5} + 4\right )}}{8 \, x^{5} - x e^{5} + 4 \, x - 8} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.24, size = 28, normalized size = 1.00
method | result | size |
gosper | \(-\frac {2 \left (-8 x^{4}+{\mathrm e}^{5}-4\right )}{-8 x^{5}+x \,{\mathrm e}^{5}-4 x +8}\) | \(28\) |
norman | \(\frac {8+16 x^{4}-2 \,{\mathrm e}^{5}}{-8 x^{5}+x \,{\mathrm e}^{5}-4 x +8}\) | \(29\) |
risch | \(\frac {8+16 x^{4}-2 \,{\mathrm e}^{5}}{-8 x^{5}+x \,{\mathrm e}^{5}-4 x +8}\) | \(29\) |
default | \(-\left (\munderset {\textit {\_R} =\RootOf \left (64+64 \textit {\_Z}^{10}+\left (-16 \,{\mathrm e}^{5}+64\right ) \textit {\_Z}^{6}-128 \textit {\_Z}^{5}+\left (-8 \,{\mathrm e}^{5}+{\mathrm e}^{10}+16\right ) \textit {\_Z}^{2}+\left (16 \,{\mathrm e}^{5}-64\right ) \textit {\_Z} \right )}{\sum }\frac {\left (16+64 \textit {\_R}^{8}+16 \left (4-{\mathrm e}^{5}\right ) \textit {\_R}^{4}+256 \textit {\_R}^{3}-8 \,{\mathrm e}^{5}+{\mathrm e}^{10}\right ) \ln \left (x -\textit {\_R} \right )}{32-320 \textit {\_R}^{9}+48 \textit {\_R}^{5} {\mathrm e}^{5}-192 \textit {\_R}^{5}+320 \textit {\_R}^{4}+8 \textit {\_R} \,{\mathrm e}^{5}-\textit {\_R} \,{\mathrm e}^{10}-8 \,{\mathrm e}^{5}-16 \textit {\_R}}\right )\) | \(128\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 29, normalized size = 1.04 \begin {gather*} -\frac {2 \, {\left (8 \, x^{4} - e^{5} + 4\right )}}{8 \, x^{5} - x {\left (e^{5} - 4\right )} - 8} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.20, size = 27, normalized size = 0.96 \begin {gather*} \frac {16\,x^4-2\,{\mathrm {e}}^5+8}{-8\,x^5+\left ({\mathrm {e}}^5-4\right )\,x+8} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.09, size = 24, normalized size = 0.86 \begin {gather*} \frac {- 16 x^{4} - 8 + 2 e^{5}}{8 x^{5} + x \left (4 - e^{5}\right ) - 8} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________