Optimal. Leaf size=23 \[ \frac {3}{5 (1-x+25 x (2+x)) \log (2 x)} \]
________________________________________________________________________________________
Rubi [F] time = 0.60, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-3-147 x-75 x^2+\left (-147 x-150 x^2\right ) \log (2 x)}{\left (5 x+490 x^2+12255 x^3+12250 x^4+3125 x^5\right ) \log ^2(2 x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-3-147 x-75 x^2+\left (-147 x-150 x^2\right ) \log (2 x)}{5 x \left (1+49 x+25 x^2\right )^2 \log ^2(2 x)} \, dx\\ &=\frac {1}{5} \int \frac {-3-147 x-75 x^2+\left (-147 x-150 x^2\right ) \log (2 x)}{x \left (1+49 x+25 x^2\right )^2 \log ^2(2 x)} \, dx\\ &=\frac {1}{5} \int \left (-\frac {3}{x \left (1+49 x+25 x^2\right ) \log ^2(2 x)}-\frac {3 (49+50 x)}{\left (1+49 x+25 x^2\right )^2 \log (2 x)}\right ) \, dx\\ &=-\left (\frac {3}{5} \int \frac {1}{x \left (1+49 x+25 x^2\right ) \log ^2(2 x)} \, dx\right )-\frac {3}{5} \int \frac {49+50 x}{\left (1+49 x+25 x^2\right )^2 \log (2 x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.32, size = 22, normalized size = 0.96 \begin {gather*} -\frac {3}{5 \left (-1-49 x-25 x^2\right ) \log (2 x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.49, size = 20, normalized size = 0.87 \begin {gather*} \frac {3}{5 \, {\left (25 \, x^{2} + 49 \, x + 1\right )} \log \left (2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 25, normalized size = 1.09 \begin {gather*} \frac {3}{5 \, {\left (25 \, x^{2} \log \left (2 \, x\right ) + 49 \, x \log \left (2 \, x\right ) + \log \left (2 \, x\right )\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 21, normalized size = 0.91
method | result | size |
norman | \(\frac {3}{5 \left (25 x^{2}+49 x +1\right ) \ln \left (2 x \right )}\) | \(21\) |
risch | \(\frac {3}{5 \left (25 x^{2}+49 x +1\right ) \ln \left (2 x \right )}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.77, size = 32, normalized size = 1.39 \begin {gather*} \frac {3}{5 \, {\left (25 \, x^{2} \log \relax (2) + 49 \, x \log \relax (2) + {\left (25 \, x^{2} + 49 \, x + 1\right )} \log \relax (x) + \log \relax (2)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.12, size = 20, normalized size = 0.87 \begin {gather*} \frac {3}{5\,\ln \left (2\,x\right )\,\left (25\,x^2+49\,x+1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 15, normalized size = 0.65 \begin {gather*} \frac {3}{\left (125 x^{2} + 245 x + 5\right ) \log {\left (2 x \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________