Optimal. Leaf size=24 \[ e^x+\frac {1}{3} \left (5+2 x+\frac {15 x}{\log (-9+x+\log (25))}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.41, antiderivative size = 44, normalized size of antiderivative = 1.83, number of steps used = 12, number of rules used = 9, integrand size = 71, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.127, Rules used = {6688, 2194, 2411, 2353, 2297, 2298, 2302, 30, 2389} \begin {gather*} \frac {2 x}{3}+e^x-\frac {5 (-x+9-\log (25))}{\log (x-9+\log (25))}+\frac {5 (9-\log (25))}{\log (x-9+\log (25))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 30
Rule 2194
Rule 2297
Rule 2298
Rule 2302
Rule 2353
Rule 2389
Rule 2411
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {2}{3}+e^x-\frac {5 x}{(-9+x+\log (25)) \log ^2(-9+x+\log (25))}+\frac {5}{\log (-9+x+\log (25))}\right ) \, dx\\ &=\frac {2 x}{3}-5 \int \frac {x}{(-9+x+\log (25)) \log ^2(-9+x+\log (25))} \, dx+5 \int \frac {1}{\log (-9+x+\log (25))} \, dx+\int e^x \, dx\\ &=e^x+\frac {2 x}{3}-5 \operatorname {Subst}\left (\int \frac {9+x-\log (25)}{x \log ^2(x)} \, dx,x,-9+x+\log (25)\right )+5 \operatorname {Subst}\left (\int \frac {1}{\log (x)} \, dx,x,-9+x+\log (25)\right )\\ &=e^x+\frac {2 x}{3}+5 \text {li}(-9+x+\log (25))-5 \operatorname {Subst}\left (\int \left (\frac {1}{\log ^2(x)}+\frac {9-\log (25)}{x \log ^2(x)}\right ) \, dx,x,-9+x+\log (25)\right )\\ &=e^x+\frac {2 x}{3}+5 \text {li}(-9+x+\log (25))-5 \operatorname {Subst}\left (\int \frac {1}{\log ^2(x)} \, dx,x,-9+x+\log (25)\right )-(5 (9-\log (25))) \operatorname {Subst}\left (\int \frac {1}{x \log ^2(x)} \, dx,x,-9+x+\log (25)\right )\\ &=e^x+\frac {2 x}{3}-\frac {5 (9-x-\log (25))}{\log (-9+x+\log (25))}+5 \text {li}(-9+x+\log (25))-5 \operatorname {Subst}\left (\int \frac {1}{\log (x)} \, dx,x,-9+x+\log (25)\right )-(5 (9-\log (25))) \operatorname {Subst}\left (\int \frac {1}{x^2} \, dx,x,\log (-9+x+\log (25))\right )\\ &=e^x+\frac {2 x}{3}+\frac {5 (9-\log (25))}{\log (-9+x+\log (25))}-\frac {5 (9-x-\log (25))}{\log (-9+x+\log (25))}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 20, normalized size = 0.83 \begin {gather*} e^x+\frac {2 x}{3}+\frac {5 x}{\log (-9+x+\log (25))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.51, size = 33, normalized size = 1.38 \begin {gather*} \frac {{\left (2 \, x + 3 \, e^{x}\right )} \log \left (x + 2 \, \log \relax (5) - 9\right ) + 15 \, x}{3 \, \log \left (x + 2 \, \log \relax (5) - 9\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.28, size = 39, normalized size = 1.62 \begin {gather*} \frac {2 \, x \log \left (x + 2 \, \log \relax (5) - 9\right ) + 3 \, e^{x} \log \left (x + 2 \, \log \relax (5) - 9\right ) + 15 \, x}{3 \, \log \left (x + 2 \, \log \relax (5) - 9\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.46, size = 20, normalized size = 0.83
method | result | size |
risch | \(\frac {2 x}{3}+{\mathrm e}^{x}+\frac {5 x}{\ln \left (2 \ln \relax (5)+x -9\right )}\) | \(20\) |
norman | \(\frac {{\mathrm e}^{x} \ln \left (2 \ln \relax (5)+x -9\right )+5 x +\frac {2 \ln \left (2 \ln \relax (5)+x -9\right ) x}{3}}{\ln \left (2 \ln \relax (5)+x -9\right )}\) | \(38\) |
default | \(\frac {2 x}{3}+\frac {10 \ln \relax (5)+5 x -45}{\ln \left (2 \ln \relax (5)+x -9\right )}-\frac {10 \ln \relax (5)}{\ln \left (2 \ln \relax (5)+x -9\right )}+\frac {45}{\ln \left (2 \ln \relax (5)+x -9\right )}+{\mathrm e}^{x}\) | \(52\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.92, size = 33, normalized size = 1.38 \begin {gather*} \frac {{\left (2 \, x + 3 \, e^{x}\right )} \log \left (x + 2 \, \log \relax (5) - 9\right ) + 15 \, x}{3 \, \log \left (x + 2 \, \log \relax (5) - 9\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.08, size = 34, normalized size = 1.42 \begin {gather*} \frac {17\,x}{3}+{\mathrm {e}}^x+\frac {5\,x-\ln \left (x+\ln \left (25\right )-9\right )\,\left (5\,x+\ln \left (9765625\right )-45\right )}{\ln \left (x+\ln \left (25\right )-9\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.39, size = 20, normalized size = 0.83 \begin {gather*} \frac {2 x}{3} + \frac {5 x}{\log {\left (x - 9 + 2 \log {\relax (5 )} \right )}} + e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________