Optimal. Leaf size=23 \[ \frac {2}{\left (\frac {1}{e^3}+x\right ) \left (\frac {x}{1-5 x}+\log (4)\right )} \]
________________________________________________________________________________________
Rubi [B] time = 0.47, antiderivative size = 69, normalized size of antiderivative = 3.00, number of steps used = 4, number of rules used = 4, integrand size = 150, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.027, Rules used = {1680, 12, 1814, 8} \begin {gather*} \frac {2 e^6 (1-5 x) (1-5 \log (4))}{e^6 x^2 (1-5 \log (4))^2+e^3 x (1-5 \log (4)) \left (1-5 \log (4)+e^3 \log (4)\right )+e^3 (1-5 \log (4)) \log (4)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 8
Rule 12
Rule 1680
Rule 1814
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\operatorname {Subst}\left (\int \frac {8 e^6 (1-5 \log (4)) \left (20 e^6 x^2 (1-5 \log (4))^2-4 e^3 x (1-5 \log (4)) \left (5+2 e^3-25 \log (4)-5 e^3 \log (4)\right )+5 \left (1-5 \log (4)-e^3 \log (4)\right )^2\right )}{\left (4 e^6 x^2 (1-5 \log (4))^2-\left (-1+5 \log (4)+e^3 \log (4)\right )^2\right )^2} \, dx,x,x+\frac {2 e^3-20 e^3 \log (4)+2 e^6 \log (4)+50 e^3 \log ^2(4)-10 e^6 \log ^2(4)}{4 \left (e^6-10 e^6 \log (4)+25 e^6 \log ^2(4)\right )}\right )\\ &=\left (8 e^6 (1-5 \log (4))\right ) \operatorname {Subst}\left (\int \frac {20 e^6 x^2 (1-5 \log (4))^2-4 e^3 x (1-5 \log (4)) \left (5+2 e^3-25 \log (4)-5 e^3 \log (4)\right )+5 \left (1-5 \log (4)-e^3 \log (4)\right )^2}{\left (4 e^6 x^2 (1-5 \log (4))^2-\left (-1+5 \log (4)+e^3 \log (4)\right )^2\right )^2} \, dx,x,x+\frac {2 e^3-20 e^3 \log (4)+2 e^6 \log (4)+50 e^3 \log ^2(4)-10 e^6 \log ^2(4)}{4 \left (e^6-10 e^6 \log (4)+25 e^6 \log ^2(4)\right )}\right )\\ &=\frac {2 e^6 (1-5 x)}{e^6 x^2 (1-5 \log (4))+e^3 \log (4)+e^3 x \left (1-5 \log (4)+e^3 \log (4)\right )}+\frac {\left (4 e^6 (1-5 \log (4))\right ) \operatorname {Subst}\left (\int 0 \, dx,x,x+\frac {2 e^3-20 e^3 \log (4)+2 e^6 \log (4)+50 e^3 \log ^2(4)-10 e^6 \log ^2(4)}{4 \left (e^6-10 e^6 \log (4)+25 e^6 \log ^2(4)\right )}\right )}{\left (1-5 \log (4)-e^3 \log (4)\right )^2}\\ &=\frac {2 e^6 (1-5 x)}{e^6 x^2 (1-5 \log (4))+e^3 \log (4)+e^3 x \left (1-5 \log (4)+e^3 \log (4)\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 34, normalized size = 1.48 \begin {gather*} -\frac {2 e^3 (1-5 x)}{\left (1+e^3 x\right ) (-\log (4)+x (-1+5 \log (4)))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.71, size = 40, normalized size = 1.74 \begin {gather*} -\frac {2 \, {\left (5 \, x - 1\right )} e^{3}}{x^{2} e^{3} - 2 \, {\left ({\left (5 \, x^{2} - x\right )} e^{3} + 5 \, x - 1\right )} \log \relax (2) + x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: NotImplementedError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.24, size = 47, normalized size = 2.04
method | result | size |
risch | \(\frac {x \,{\mathrm e}^{3}-\frac {{\mathrm e}^{3}}{5}}{{\mathrm e}^{3} \ln \relax (2) x^{2}-\frac {{\mathrm e}^{3} \ln \relax (2) x}{5}-\frac {x^{2} {\mathrm e}^{3}}{10}+x \ln \relax (2)-\frac {\ln \relax (2)}{5}-\frac {x}{10}}\) | \(47\) |
gosper | \(\frac {2 \left (5 x -1\right ) {\mathrm e}^{3}}{10 \,{\mathrm e}^{3} \ln \relax (2) x^{2}-2 \,{\mathrm e}^{3} \ln \relax (2) x -x^{2} {\mathrm e}^{3}+10 x \ln \relax (2)-2 \ln \relax (2)-x}\) | \(48\) |
norman | \(\frac {\frac {\left (4 \ln \relax (2) {\mathrm e}^{6}+2 \,{\mathrm e}^{3}\right ) x}{2 \ln \relax (2)}-\frac {\left (10 \ln \relax (2)-1\right ) {\mathrm e}^{6} x^{2}}{\ln \relax (2)}}{\left (10 x \ln \relax (2)-2 \ln \relax (2)-x \right ) \left (x \,{\mathrm e}^{3}+1\right )}\) | \(65\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.43, size = 47, normalized size = 2.04 \begin {gather*} \frac {2 \, {\left (5 \, x e^{3} - e^{3}\right )}}{{\left (10 \, e^{3} \log \relax (2) - e^{3}\right )} x^{2} - {\left (2 \, {\left (e^{3} - 5\right )} \log \relax (2) + 1\right )} x - 2 \, \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F(-1)] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \text {Hanged} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 4.55, size = 49, normalized size = 2.13 \begin {gather*} - \frac {- 10 x e^{3} + 2 e^{3}}{x^{2} \left (- e^{3} + 10 e^{3} \log {\relax (2 )}\right ) + x \left (- 2 e^{3} \log {\relax (2 )} - 1 + 10 \log {\relax (2 )}\right ) - 2 \log {\relax (2 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________