Optimal. Leaf size=27 \[ \frac {2}{e^2+e^{\frac {9 x}{\log \left (\frac {\left (e^5+x\right )^2}{e^8}\right )}}} \]
________________________________________________________________________________________
Rubi [A] time = 0.86, antiderivative size = 27, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 200, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.015, Rules used = {6688, 12, 6686} \begin {gather*} \frac {2}{e^{-\frac {9 x}{8-\log \left (\left (x+e^5\right )^2\right )}}+e^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6686
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {18 e^{\frac {9 x}{-8+\log \left (\left (e^5+x\right )^2\right )}} \left (2 \left (4 e^5+5 x\right )-\left (e^5+x\right ) \log \left (\left (e^5+x\right )^2\right )\right )}{\left (e^2+e^{\frac {9 x}{-8+\log \left (\left (e^5+x\right )^2\right )}}\right )^2 \left (e^5+x\right ) \left (8-\log \left (\left (e^5+x\right )^2\right )\right )^2} \, dx\\ &=18 \int \frac {e^{\frac {9 x}{-8+\log \left (\left (e^5+x\right )^2\right )}} \left (2 \left (4 e^5+5 x\right )-\left (e^5+x\right ) \log \left (\left (e^5+x\right )^2\right )\right )}{\left (e^2+e^{\frac {9 x}{-8+\log \left (\left (e^5+x\right )^2\right )}}\right )^2 \left (e^5+x\right ) \left (8-\log \left (\left (e^5+x\right )^2\right )\right )^2} \, dx\\ &=\frac {2}{e^2+e^{-\frac {9 x}{8-\log \left (\left (e^5+x\right )^2\right )}}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.18, size = 28, normalized size = 1.04 \begin {gather*} -\frac {2}{e^2 \left (1+e^{2-\frac {9 x}{-8+\log \left (\left (e^5+x\right )^2\right )}}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 28, normalized size = 1.04 \begin {gather*} \frac {2}{e^{2} + e^{\left (\frac {9 \, x}{\log \left ({\left (x^{2} + 2 \, x e^{5} + e^{10}\right )} e^{\left (-8\right )}\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 2.80, size = 776, normalized size = 28.74 \begin {gather*} \frac {2 \, {\left (x^{2} \log \left (x^{2} + 2 \, x e^{5} + e^{10}\right )^{3} + 2 \, x e^{5} \log \left (x^{2} + 2 \, x e^{5} + e^{10}\right )^{3} - 26 \, x^{2} \log \left (x^{2} + 2 \, x e^{5} + e^{10}\right )^{2} - 50 \, x e^{5} \log \left (x^{2} + 2 \, x e^{5} + e^{10}\right )^{2} + e^{10} \log \left (x^{2} + 2 \, x e^{5} + e^{10}\right )^{3} + 224 \, x^{2} \log \left (x^{2} + 2 \, x e^{5} + e^{10}\right ) + 416 \, x e^{5} \log \left (x^{2} + 2 \, x e^{5} + e^{10}\right ) - 24 \, e^{10} \log \left (x^{2} + 2 \, x e^{5} + e^{10}\right )^{2} - 640 \, x^{2} - 1152 \, x e^{5} + 192 \, e^{10} \log \left (x^{2} + 2 \, x e^{5} + e^{10}\right ) - 512 \, e^{10}\right )}}{x^{2} e^{2} \log \left (x^{2} + 2 \, x e^{5} + e^{10}\right )^{3} + x^{2} e^{\left (\frac {9 \, x}{\log \left (x^{2} + 2 \, x e^{5} + e^{10}\right ) - 8}\right )} \log \left (x^{2} + 2 \, x e^{5} + e^{10}\right )^{3} - 26 \, x^{2} e^{2} \log \left (x^{2} + 2 \, x e^{5} + e^{10}\right )^{2} - 26 \, x^{2} e^{\left (\frac {9 \, x}{\log \left (x^{2} + 2 \, x e^{5} + e^{10}\right ) - 8}\right )} \log \left (x^{2} + 2 \, x e^{5} + e^{10}\right )^{2} + 2 \, x e^{7} \log \left (x^{2} + 2 \, x e^{5} + e^{10}\right )^{3} + 2 \, x e^{\left (\frac {9 \, x}{\log \left (x^{2} + 2 \, x e^{5} + e^{10}\right ) - 8} + 5\right )} \log \left (x^{2} + 2 \, x e^{5} + e^{10}\right )^{3} + 224 \, x^{2} e^{2} \log \left (x^{2} + 2 \, x e^{5} + e^{10}\right ) + 224 \, x^{2} e^{\left (\frac {9 \, x}{\log \left (x^{2} + 2 \, x e^{5} + e^{10}\right ) - 8}\right )} \log \left (x^{2} + 2 \, x e^{5} + e^{10}\right ) - 50 \, x e^{7} \log \left (x^{2} + 2 \, x e^{5} + e^{10}\right )^{2} - 50 \, x e^{\left (\frac {9 \, x}{\log \left (x^{2} + 2 \, x e^{5} + e^{10}\right ) - 8} + 5\right )} \log \left (x^{2} + 2 \, x e^{5} + e^{10}\right )^{2} + e^{12} \log \left (x^{2} + 2 \, x e^{5} + e^{10}\right )^{3} + e^{\left (\frac {9 \, x}{\log \left (x^{2} + 2 \, x e^{5} + e^{10}\right ) - 8} + 10\right )} \log \left (x^{2} + 2 \, x e^{5} + e^{10}\right )^{3} - 640 \, x^{2} e^{2} - 640 \, x^{2} e^{\left (\frac {9 \, x}{\log \left (x^{2} + 2 \, x e^{5} + e^{10}\right ) - 8}\right )} + 416 \, x e^{7} \log \left (x^{2} + 2 \, x e^{5} + e^{10}\right ) + 416 \, x e^{\left (\frac {9 \, x}{\log \left (x^{2} + 2 \, x e^{5} + e^{10}\right ) - 8} + 5\right )} \log \left (x^{2} + 2 \, x e^{5} + e^{10}\right ) - 24 \, e^{12} \log \left (x^{2} + 2 \, x e^{5} + e^{10}\right )^{2} - 24 \, e^{\left (\frac {9 \, x}{\log \left (x^{2} + 2 \, x e^{5} + e^{10}\right ) - 8} + 10\right )} \log \left (x^{2} + 2 \, x e^{5} + e^{10}\right )^{2} - 1152 \, x e^{7} - 1152 \, x e^{\left (\frac {9 \, x}{\log \left (x^{2} + 2 \, x e^{5} + e^{10}\right ) - 8} + 5\right )} + 192 \, e^{12} \log \left (x^{2} + 2 \, x e^{5} + e^{10}\right ) + 192 \, e^{\left (\frac {9 \, x}{\log \left (x^{2} + 2 \, x e^{5} + e^{10}\right ) - 8} + 10\right )} \log \left (x^{2} + 2 \, x e^{5} + e^{10}\right ) - 512 \, e^{12} - 512 \, e^{\left (\frac {9 \, x}{\log \left (x^{2} + 2 \, x e^{5} + e^{10}\right ) - 8} + 10\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 4.16, size = 29, normalized size = 1.07
method | result | size |
risch | \(\frac {2}{{\mathrm e}^{2}+{\mathrm e}^{\frac {9 x}{\ln \left (\left ({\mathrm e}^{10}+2 x \,{\mathrm e}^{5}+x^{2}\right ) {\mathrm e}^{-8}\right )}}}\) | \(29\) |
norman | \(\frac {2}{{\mathrm e}^{2}+{\mathrm e}^{\frac {9 x}{\ln \left (\left ({\mathrm e}^{10}+2 x \,{\mathrm e}^{5}+x^{2}\right ) {\mathrm e}^{-8}\right )}}}\) | \(33\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.52, size = 20, normalized size = 0.74 \begin {gather*} \frac {2}{e^{2} + e^{\left (\frac {9 \, x}{2 \, {\left (\log \left (x + e^{5}\right ) - 4\right )}}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.13, size = 28, normalized size = 1.04 \begin {gather*} \frac {2}{{\mathrm {e}}^2+{\mathrm {e}}^{\frac {9\,x}{\ln \left ({\mathrm {e}}^{-8}\,x^2+2\,{\mathrm {e}}^{-3}\,x+{\mathrm {e}}^2\right )}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.45, size = 27, normalized size = 1.00 \begin {gather*} \frac {2}{e^{\frac {9 x}{\log {\left (\frac {x^{2} + 2 x e^{5} + e^{10}}{e^{8}} \right )}}} + e^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________