Optimal. Leaf size=28 \[ -1+\log \left (-6+x+\log \left (\frac {1}{5} e^{(-1+x)^2 x^2}\right )+\log \left (\frac {2}{x}\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.34, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-1+x+2 x^2-6 x^3+4 x^4}{-6 x+x^2+x \log \left (\frac {1}{5} e^{x^2-2 x^3+x^4}\right )+x \log \left (\frac {2}{x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {1}{-6+x+\log \left (\frac {1}{5} e^{(-1+x)^2 x^2}\right )+\log \left (\frac {2}{x}\right )}-\frac {1}{x \left (-6+x+\log \left (\frac {1}{5} e^{(-1+x)^2 x^2}\right )+\log \left (\frac {2}{x}\right )\right )}+\frac {2 x}{-6+x+\log \left (\frac {1}{5} e^{(-1+x)^2 x^2}\right )+\log \left (\frac {2}{x}\right )}-\frac {6 x^2}{-6+x+\log \left (\frac {1}{5} e^{(-1+x)^2 x^2}\right )+\log \left (\frac {2}{x}\right )}+\frac {4 x^3}{-6+x+\log \left (\frac {1}{5} e^{(-1+x)^2 x^2}\right )+\log \left (\frac {2}{x}\right )}\right ) \, dx\\ &=2 \int \frac {x}{-6+x+\log \left (\frac {1}{5} e^{(-1+x)^2 x^2}\right )+\log \left (\frac {2}{x}\right )} \, dx+4 \int \frac {x^3}{-6+x+\log \left (\frac {1}{5} e^{(-1+x)^2 x^2}\right )+\log \left (\frac {2}{x}\right )} \, dx-6 \int \frac {x^2}{-6+x+\log \left (\frac {1}{5} e^{(-1+x)^2 x^2}\right )+\log \left (\frac {2}{x}\right )} \, dx+\int \frac {1}{-6+x+\log \left (\frac {1}{5} e^{(-1+x)^2 x^2}\right )+\log \left (\frac {2}{x}\right )} \, dx-\int \frac {1}{x \left (-6+x+\log \left (\frac {1}{5} e^{(-1+x)^2 x^2}\right )+\log \left (\frac {2}{x}\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.29, size = 26, normalized size = 0.93 \begin {gather*} \log \left (-6+x+\log \left (\frac {1}{5} e^{(-1+x)^2 x^2}\right )+\log \left (\frac {2}{x}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.72, size = 25, normalized size = 0.89 \begin {gather*} \log \left (x^{4} - 2 \, x^{3} + x^{2} + x - \log \relax (5) + \log \left (\frac {2}{x}\right ) - 6\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 29, normalized size = 1.04 \begin {gather*} \log \left (-x^{4} + 2 \, x^{3} - x^{2} - x + \log \relax (5) - \log \relax (2) + \log \relax (x) + 6\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 27, normalized size = 0.96
method | result | size |
default | \(\ln \left (\ln \left (\frac {{\mathrm e}^{x^{4}-2 x^{3}+x^{2}}}{5}\right )+\ln \left (\frac {2}{x}\right )+x -6\right )\) | \(27\) |
risch | \(\ln \left (\ln \left ({\mathrm e}^{x^{2} \left (x -1\right )^{2}}\right )-\frac {i \left (-2 i \ln \relax (5)+2 i \ln \relax (2)+2 i x -2 i \ln \relax (x )-12 i\right )}{2}\right )\) | \(39\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.59, size = 29, normalized size = 1.04 \begin {gather*} \log \left (-x^{4} + 2 \, x^{3} - x^{2} - x + \log \relax (5) - \log \relax (2) + \log \relax (x) + 6\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.03, size = 21, normalized size = 0.75 \begin {gather*} \ln \left (x+\ln \left (\frac {2}{5\,x}\right )+x^2-2\,x^3+x^4-6\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.40, size = 24, normalized size = 0.86 \begin {gather*} \log {\left (x^{4} - 2 x^{3} + x^{2} + x + \log {\left (\frac {2}{x} \right )} - 6 - \log {\relax (5 )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________