Optimal. Leaf size=23 \[ 3+2 \left (-3+e^{3+e^x+\frac {16}{x^2 (4+x)}}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 6.86, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {16+12 x^2+3 x^3+e^x \left (4 x^2+x^3\right )}{4 x^2+x^3}\right ) \left (-256-96 x+e^x \left (32 x^3+16 x^4+2 x^5\right )\right )}{16 x^3+8 x^4+x^5} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (\frac {16+12 x^2+3 x^3+e^x \left (4 x^2+x^3\right )}{4 x^2+x^3}\right ) \left (-256-96 x+e^x \left (32 x^3+16 x^4+2 x^5\right )\right )}{x^3 \left (16+8 x+x^2\right )} \, dx\\ &=\int \frac {\exp \left (\frac {16+12 x^2+3 x^3+e^x \left (4 x^2+x^3\right )}{4 x^2+x^3}\right ) \left (-256-96 x+e^x \left (32 x^3+16 x^4+2 x^5\right )\right )}{x^3 (4+x)^2} \, dx\\ &=\int \frac {\exp \left (\frac {16+12 x^2+3 x^3+e^x \left (4 x^2+x^3\right )}{x^2 (4+x)}\right ) \left (-256-96 x+e^x \left (32 x^3+16 x^4+2 x^5\right )\right )}{x^3 (4+x)^2} \, dx\\ &=\int \left (2 \exp \left (x+\frac {16+12 x^2+3 x^3+e^x \left (4 x^2+x^3\right )}{x^2 (4+x)}\right )-\frac {32 \exp \left (\frac {16+12 x^2+3 x^3+e^x \left (4 x^2+x^3\right )}{x^2 (4+x)}\right ) (8+3 x)}{x^3 (4+x)^2}\right ) \, dx\\ &=2 \int \exp \left (x+\frac {16+12 x^2+3 x^3+e^x \left (4 x^2+x^3\right )}{x^2 (4+x)}\right ) \, dx-32 \int \frac {\exp \left (\frac {16+12 x^2+3 x^3+e^x \left (4 x^2+x^3\right )}{x^2 (4+x)}\right ) (8+3 x)}{x^3 (4+x)^2} \, dx\\ &=2 \int \exp \left (x+\frac {16+12 x^2+3 x^3+e^x \left (4 x^2+x^3\right )}{x^2 (4+x)}\right ) \, dx-32 \int \left (\frac {\exp \left (\frac {16+12 x^2+3 x^3+e^x \left (4 x^2+x^3\right )}{x^2 (4+x)}\right )}{2 x^3}-\frac {\exp \left (\frac {16+12 x^2+3 x^3+e^x \left (4 x^2+x^3\right )}{x^2 (4+x)}\right )}{16 x^2}+\frac {\exp \left (\frac {16+12 x^2+3 x^3+e^x \left (4 x^2+x^3\right )}{x^2 (4+x)}\right )}{16 (4+x)^2}\right ) \, dx\\ &=2 \int \exp \left (x+\frac {16+12 x^2+3 x^3+e^x \left (4 x^2+x^3\right )}{x^2 (4+x)}\right ) \, dx+2 \int \frac {\exp \left (\frac {16+12 x^2+3 x^3+e^x \left (4 x^2+x^3\right )}{x^2 (4+x)}\right )}{x^2} \, dx-2 \int \frac {\exp \left (\frac {16+12 x^2+3 x^3+e^x \left (4 x^2+x^3\right )}{x^2 (4+x)}\right )}{(4+x)^2} \, dx-16 \int \frac {\exp \left (\frac {16+12 x^2+3 x^3+e^x \left (4 x^2+x^3\right )}{x^2 (4+x)}\right )}{x^3} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.25, size = 24, normalized size = 1.04 \begin {gather*} 2 e^{3+e^x+\frac {4}{x^2}-\frac {1}{x}+\frac {1}{4+x}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.59, size = 39, normalized size = 1.70 \begin {gather*} 2 \, e^{\left (\frac {3 \, x^{3} + 12 \, x^{2} + {\left (x^{3} + 4 \, x^{2}\right )} e^{x} + 16}{x^{3} + 4 \, x^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.36, size = 84, normalized size = 3.65 \begin {gather*} 2 \, e^{\left (\frac {x^{3} e^{x}}{x^{3} + 4 \, x^{2}} + \frac {3 \, x^{3}}{x^{3} + 4 \, x^{2}} + \frac {4 \, x^{2} e^{x}}{x^{3} + 4 \, x^{2}} + \frac {12 \, x^{2}}{x^{3} + 4 \, x^{2}} + \frac {16}{x^{3} + 4 \, x^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 38, normalized size = 1.65
method | result | size |
risch | \(2 \,{\mathrm e}^{\frac {{\mathrm e}^{x} x^{3}+4 \,{\mathrm e}^{x} x^{2}+3 x^{3}+12 x^{2}+16}{x^{2} \left (4+x \right )}}\) | \(38\) |
norman | \(\frac {8 x^{2} {\mathrm e}^{\frac {\left (x^{3}+4 x^{2}\right ) {\mathrm e}^{x}+3 x^{3}+12 x^{2}+16}{x^{3}+4 x^{2}}}+2 x^{3} {\mathrm e}^{\frac {\left (x^{3}+4 x^{2}\right ) {\mathrm e}^{x}+3 x^{3}+12 x^{2}+16}{x^{3}+4 x^{2}}}}{x^{2} \left (4+x \right )}\) | \(95\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.56, size = 22, normalized size = 0.96 \begin {gather*} 2 \, e^{\left (\frac {1}{x + 4} - \frac {1}{x} + \frac {4}{x^{2}} + e^{x} + 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.84, size = 53, normalized size = 2.30 \begin {gather*} 2\,{\mathrm {e}}^{\frac {x\,{\mathrm {e}}^x}{x+4}}\,{\mathrm {e}}^{\frac {3\,x}{x+4}}\,{\mathrm {e}}^{\frac {16}{x^3+4\,x^2}}\,{\mathrm {e}}^{\frac {4\,{\mathrm {e}}^x}{x+4}}\,{\mathrm {e}}^{\frac {12}{x+4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.33, size = 34, normalized size = 1.48 \begin {gather*} 2 e^{\frac {3 x^{3} + 12 x^{2} + \left (x^{3} + 4 x^{2}\right ) e^{x} + 16}{x^{3} + 4 x^{2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________