Optimal. Leaf size=30 \[ \log \left (4 \left (1+e^2 \left (4+e^{2 x}-e^{3+x}\right )+\frac {3}{2 x}\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.45, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {3+2 e^{5+x} x^2-4 e^{2+2 x} x^2}{-3 x-2 x^2-8 e^2 x^2+2 e^{5+x} x^2-2 e^{2+2 x} x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {3+2 e^{5+x} x^2-4 e^{2+2 x} x^2}{-3 x+2 e^{5+x} x^2-2 e^{2+2 x} x^2+\left (-2-8 e^2\right ) x^2} \, dx\\ &=\int \left (2+\frac {-3-6 x+2 e^{5+x} x^2-4 \left (1+4 e^2\right ) x^2}{x \left (3-2 e^{5+x} x+2 e^{2+2 x} x+2 \left (1+4 e^2\right ) x\right )}\right ) \, dx\\ &=2 x+\int \frac {-3-6 x+2 e^{5+x} x^2-4 \left (1+4 e^2\right ) x^2}{x \left (3-2 e^{5+x} x+2 e^{2+2 x} x+2 \left (1+4 e^2\right ) x\right )} \, dx\\ &=2 x+\int \left (\frac {6}{-3+2 e^{5+x} x-2 e^{2+2 x} x-2 \left (1+4 e^2\right ) x}+\frac {3}{x \left (-3+2 e^{5+x} x-2 e^{2+2 x} x-2 \left (1+4 e^2\right ) x\right )}+\frac {2 e^{5+x} x}{3-2 e^{5+x} x+2 e^{2+2 x} x+2 \left (1+4 e^2\right ) x}+\frac {4 \left (-1-4 e^2\right ) x}{3-2 e^{5+x} x+2 e^{2+2 x} x+2 \left (1+4 e^2\right ) x}\right ) \, dx\\ &=2 x+2 \int \frac {e^{5+x} x}{3-2 e^{5+x} x+2 e^{2+2 x} x+2 \left (1+4 e^2\right ) x} \, dx+3 \int \frac {1}{x \left (-3+2 e^{5+x} x-2 e^{2+2 x} x-2 \left (1+4 e^2\right ) x\right )} \, dx+6 \int \frac {1}{-3+2 e^{5+x} x-2 e^{2+2 x} x-2 \left (1+4 e^2\right ) x} \, dx-\left (4 \left (1+4 e^2\right )\right ) \int \frac {x}{3-2 e^{5+x} x+2 e^{2+2 x} x+2 \left (1+4 e^2\right ) x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.48, size = 35, normalized size = 1.17 \begin {gather*} -\log (x)+\log \left (3+2 x+8 e^2 x-2 e^{5+x} x+2 e^{2+2 x} x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.71, size = 35, normalized size = 1.17 \begin {gather*} \log \left (\frac {8 \, x e^{10} + {\left (2 \, x + 3\right )} e^{8} + 2 \, x e^{\left (2 \, x + 10\right )} - 2 \, x e^{\left (x + 13\right )}}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.97, size = 32, normalized size = 1.07 \begin {gather*} \log \left (-8 \, x e^{2} - 2 \, x e^{\left (2 \, x + 2\right )} + 2 \, x e^{\left (x + 5\right )} - 2 \, x - 3\right ) - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 30, normalized size = 1.00
method | result | size |
risch | \(\ln \left ({\mathrm e}^{2 x}-{\mathrm e}^{3+x}+\frac {\left (8 \,{\mathrm e}^{2} x +2 x +3\right ) {\mathrm e}^{-2}}{2 x}\right )\) | \(30\) |
norman | \(-\ln \relax (x )+\ln \left (2 \,{\mathrm e}^{2} {\mathrm e}^{x} {\mathrm e}^{3} x -2 x \,{\mathrm e}^{2} {\mathrm e}^{2 x}-8 \,{\mathrm e}^{2} x -2 x -3\right )\) | \(35\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.82, size = 35, normalized size = 1.17 \begin {gather*} \log \left (\frac {{\left (2 \, x {\left (4 \, e^{2} + 1\right )} + 2 \, x e^{\left (2 \, x + 2\right )} - 2 \, x e^{\left (x + 5\right )} + 3\right )} e^{\left (-2\right )}}{2 \, x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.39, size = 37, normalized size = 1.23 \begin {gather*} \ln \left (3\,{\mathrm {e}}^8+2\,x\,{\mathrm {e}}^8+8\,x\,{\mathrm {e}}^{10}-2\,x\,{\mathrm {e}}^{13}\,{\mathrm {e}}^x+2\,x\,{\mathrm {e}}^{2\,x}\,{\mathrm {e}}^{10}\right )-\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.33, size = 36, normalized size = 1.20 \begin {gather*} \log {\left (e^{2 x} - e^{3} \sqrt {e^{2 x}} + \frac {2 x + 8 x e^{2} + 3}{2 x e^{2}} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________