Optimal. Leaf size=34 \[ 3+\frac {\frac {x}{2+x}+\frac {9}{25 \left (-e^x+x\right )^2}+\log (3)}{x (2+x)} \]
________________________________________________________________________________________
Rubi [F] time = 3.60, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {108 x+126 x^2+36 x^3+50 x^5+\left (100 x^3+150 x^4+50 x^5\right ) \log (3)+e^{3 x} \left (-50 x^2+\left (-100-150 x-50 x^2\right ) \log (3)\right )+e^{2 x} \left (150 x^3+\left (300 x+450 x^2+150 x^3\right ) \log (3)\right )+e^x \left (-36-126 x-90 x^2-18 x^3-150 x^4+\left (-300 x^2-450 x^3-150 x^4\right ) \log (3)\right )}{-200 x^5-300 x^6-150 x^7-25 x^8+e^{3 x} \left (200 x^2+300 x^3+150 x^4+25 x^5\right )+e^{2 x} \left (-600 x^3-900 x^4-450 x^5-75 x^6\right )+e^x \left (600 x^4+900 x^5+450 x^6+75 x^7\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 x \left (54+63 x+75 x^3 \log (3)+25 x^4 (1+\log (3))+2 x^2 (9+25 \log (3))\right )-6 e^x \left (6+21 x+25 x^4 (1+\log (3))+5 x^2 (3+10 \log (3))+x^3 (3+75 \log (3))\right )-50 e^{3 x} \left (x^2 (1+\log (3))+\log (9)+x \log (27)\right )+150 e^{2 x} x \left (x^2 (1+\log (3))+\log (9)+x \log (27)\right )}{25 \left (e^x-x\right )^3 x^2 (2+x)^3} \, dx\\ &=\frac {1}{25} \int \frac {2 x \left (54+63 x+75 x^3 \log (3)+25 x^4 (1+\log (3))+2 x^2 (9+25 \log (3))\right )-6 e^x \left (6+21 x+25 x^4 (1+\log (3))+5 x^2 (3+10 \log (3))+x^3 (3+75 \log (3))\right )-50 e^{3 x} \left (x^2 (1+\log (3))+\log (9)+x \log (27)\right )+150 e^{2 x} x \left (x^2 (1+\log (3))+\log (9)+x \log (27)\right )}{\left (e^x-x\right )^3 x^2 (2+x)^3} \, dx\\ &=\frac {1}{25} \int \left (\frac {18 (-1+x)}{x (2+x) \left (-e^x+x\right )^3}-\frac {18 \left (1+3 x+x^2\right )}{\left (e^x-x\right )^2 x^2 (2+x)^2}+\frac {50 \left (-x^2 (1+\log (3))-\log (9)-x \log (27)\right )}{x^2 (2+x)^3}\right ) \, dx\\ &=\frac {18}{25} \int \frac {-1+x}{x (2+x) \left (-e^x+x\right )^3} \, dx-\frac {18}{25} \int \frac {1+3 x+x^2}{\left (e^x-x\right )^2 x^2 (2+x)^2} \, dx+2 \int \frac {-x^2 (1+\log (3))-\log (9)-x \log (27)}{x^2 (2+x)^3} \, dx\\ &=-\left (\frac {18}{25} \int \left (\frac {1}{4 \left (e^x-x\right )^2 x^2}+\frac {1}{2 \left (e^x-x\right )^2 x}-\frac {1}{4 \left (e^x-x\right )^2 (2+x)^2}-\frac {1}{2 \left (e^x-x\right )^2 (2+x)}\right ) \, dx\right )+\frac {18}{25} \int \left (-\frac {1}{2 x \left (-e^x+x\right )^3}+\frac {3}{2 (2+x) \left (-e^x+x\right )^3}\right ) \, dx+2 \int \left (-\frac {1}{(2+x)^3}+\frac {\log (3)}{4 (2+x)^2}-\frac {\log (9)}{8 x^2}\right ) \, dx\\ &=\frac {1}{(2+x)^2}-\frac {\log (3)}{2 (2+x)}+\frac {\log (9)}{4 x}-\frac {9}{50} \int \frac {1}{\left (e^x-x\right )^2 x^2} \, dx+\frac {9}{50} \int \frac {1}{\left (e^x-x\right )^2 (2+x)^2} \, dx-\frac {9}{25} \int \frac {1}{\left (e^x-x\right )^2 x} \, dx+\frac {9}{25} \int \frac {1}{\left (e^x-x\right )^2 (2+x)} \, dx-\frac {9}{25} \int \frac {1}{x \left (-e^x+x\right )^3} \, dx+\frac {27}{25} \int \frac {1}{(2+x) \left (-e^x+x\right )^3} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.25, size = 45, normalized size = 1.32 \begin {gather*} \frac {1}{100} \left (-\frac {50 (-2+x \log (3)+\log (9))}{(2+x)^2}+\frac {\frac {36}{\left (e^x-x\right )^2 (2+x)}+25 \log (9)}{x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 2.78, size = 108, normalized size = 3.18 \begin {gather*} \frac {25 \, x^{3} + 25 \, {\left ({\left (x + 2\right )} \log \relax (3) + x\right )} e^{\left (2 \, x\right )} - 50 \, {\left (x^{2} + {\left (x^{2} + 2 \, x\right )} \log \relax (3)\right )} e^{x} + 25 \, {\left (x^{3} + 2 \, x^{2}\right )} \log \relax (3) + 9 \, x + 18}{25 \, {\left (x^{5} + 4 \, x^{4} + 4 \, x^{3} + {\left (x^{3} + 4 \, x^{2} + 4 \, x\right )} e^{\left (2 \, x\right )} - 2 \, {\left (x^{4} + 4 \, x^{3} + 4 \, x^{2}\right )} e^{x}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.34, size = 134, normalized size = 3.94 \begin {gather*} \frac {25 \, x^{3} \log \relax (3) - 50 \, x^{2} e^{x} \log \relax (3) + 25 \, x^{3} - 50 \, x^{2} e^{x} + 50 \, x^{2} \log \relax (3) + 25 \, x e^{\left (2 \, x\right )} \log \relax (3) - 100 \, x e^{x} \log \relax (3) + 25 \, x e^{\left (2 \, x\right )} + 50 \, e^{\left (2 \, x\right )} \log \relax (3) + 9 \, x + 18}{25 \, {\left (x^{5} - 2 \, x^{4} e^{x} + 4 \, x^{4} + x^{3} e^{\left (2 \, x\right )} - 8 \, x^{3} e^{x} + 4 \, x^{3} + 4 \, x^{2} e^{\left (2 \, x\right )} - 8 \, x^{2} e^{x} + 4 \, x e^{\left (2 \, x\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 45, normalized size = 1.32
method | result | size |
risch | \(\frac {\left (\ln \relax (3)+1\right ) x +2 \ln \relax (3)}{x \left (x^{2}+4 x +4\right )}+\frac {9}{25 x \left (2+x \right ) \left (x -{\mathrm e}^{x}\right )^{2}}\) | \(45\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 1.13, size = 109, normalized size = 3.21 \begin {gather*} \frac {25 \, x^{3} {\left (\log \relax (3) + 1\right )} + 50 \, x^{2} \log \relax (3) + 25 \, {\left (x {\left (\log \relax (3) + 1\right )} + 2 \, \log \relax (3)\right )} e^{\left (2 \, x\right )} - 50 \, {\left (x^{2} {\left (\log \relax (3) + 1\right )} + 2 \, x \log \relax (3)\right )} e^{x} + 9 \, x + 18}{25 \, {\left (x^{5} + 4 \, x^{4} + 4 \, x^{3} + {\left (x^{3} + 4 \, x^{2} + 4 \, x\right )} e^{\left (2 \, x\right )} - 2 \, {\left (x^{4} + 4 \, x^{3} + 4 \, x^{2}\right )} e^{x}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.23, size = 99, normalized size = 2.91 \begin {gather*} \frac {2\,\ln \relax (3)+x\,\left (\frac {\ln \relax (9)}{2}+1\right )}{x^3+4\,x^2+4\,x}+\frac {3\,\left (50\,x^2\,\ln \relax (3)+75\,x^3\,\ln \relax (3)-25\,x^2\,\ln \relax (9)-25\,x^3\,\ln \left (27\right )+9\,x^2+3\,x^3-12\right )}{25\,x\,\left (x-1\right )\,{\left (x+2\right )}^3\,\left ({\mathrm {e}}^{2\,x}-2\,x\,{\mathrm {e}}^x+x^2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.54, size = 65, normalized size = 1.91 \begin {gather*} - \frac {x \left (- \log {\relax (3 )} - 1\right ) - 2 \log {\relax (3 )}}{x^{3} + 4 x^{2} + 4 x} + \frac {9}{25 x^{4} + 50 x^{3} + \left (25 x^{2} + 50 x\right ) e^{2 x} + \left (- 50 x^{3} - 100 x^{2}\right ) e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________