Optimal. Leaf size=28 \[ -2+\log (2)+\frac {-x+\log (x)}{e^5+x}-\log \left ((-3+x) x^2\right ) \]
________________________________________________________________________________________
Rubi [B] time = 1.02, antiderivative size = 246, normalized size of antiderivative = 8.79, number of steps used = 11, number of rules used = 7, integrand size = 87, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.080, Rules used = {6688, 6742, 148, 893, 1612, 2314, 31} \begin {gather*} \frac {3+16 e^5+7 e^{10}}{\left (3+e^5\right ) \left (x+e^5\right )}-\frac {3+7 e^5+3 e^{10}}{\left (3+e^5\right ) \left (x+e^5\right )}-\frac {3 e^5 \left (2+e^5\right )}{\left (3+e^5\right ) \left (x+e^5\right )}-\frac {e^{10} \log (3-x)}{\left (3+e^5\right )^2}-\frac {6 e^5 \log (3-x)}{\left (3+e^5\right )^2}-\frac {9 \log (3-x)}{\left (3+e^5\right )^2}-\frac {x \log (x)}{e^5 \left (x+e^5\right )}+\frac {\log (x)}{e^5}-2 \log (x)-\frac {3 \left (6+6 e^5+e^{10}\right ) \log \left (x+e^5\right )}{\left (3+e^5\right )^2}+\frac {3 \left (6+4 e^5+e^{10}\right ) \log \left (x+e^5\right )}{\left (3+e^5\right )^2}-\frac {\left (9+6 e^5-5 e^{10}\right ) \log \left (x+e^5\right )}{e^5 \left (3+e^5\right )^2}+\frac {\log \left (x+e^5\right )}{e^5} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 31
Rule 148
Rule 893
Rule 1612
Rule 2314
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {3 e^{10} (-2+x)-e^5 \left (-3+16 x-7 x^2\right )-x \left (-3+7 x-3 x^2\right )+(-3+x) x \log (x)}{(3-x) x \left (e^5+x\right )^2} \, dx\\ &=\int \left (-\frac {3 e^{10} (-2+x)}{(-3+x) x \left (e^5+x\right )^2}+\frac {-3+7 x-3 x^2}{(-3+x) \left (e^5+x\right )^2}-\frac {e^5 \left (3-16 x+7 x^2\right )}{(-3+x) x \left (e^5+x\right )^2}-\frac {\log (x)}{\left (e^5+x\right )^2}\right ) \, dx\\ &=-\left (e^5 \int \frac {3-16 x+7 x^2}{(-3+x) x \left (e^5+x\right )^2} \, dx\right )-\left (3 e^{10}\right ) \int \frac {-2+x}{(-3+x) x \left (e^5+x\right )^2} \, dx+\int \frac {-3+7 x-3 x^2}{(-3+x) \left (e^5+x\right )^2} \, dx-\int \frac {\log (x)}{\left (e^5+x\right )^2} \, dx\\ &=-\frac {x \log (x)}{e^5 \left (e^5+x\right )}+\frac {\int \frac {1}{e^5+x} \, dx}{e^5}-e^5 \int \left (\frac {6}{\left (3+e^5\right )^2 (-3+x)}-\frac {1}{e^{10} x}+\frac {3+16 e^5+7 e^{10}}{e^5 \left (3+e^5\right ) \left (e^5+x\right )^2}+\frac {9+6 e^5-5 e^{10}}{e^{10} \left (3+e^5\right )^2 \left (e^5+x\right )}\right ) \, dx-\left (3 e^{10}\right ) \int \left (\frac {1}{3 \left (3+e^5\right )^2 (-3+x)}+\frac {2}{3 e^{10} x}+\frac {-2-e^5}{e^5 \left (3+e^5\right ) \left (e^5+x\right )^2}+\frac {-6-4 e^5-e^{10}}{e^{10} \left (3+e^5\right )^2 \left (e^5+x\right )}\right ) \, dx+\int \left (-\frac {9}{\left (3+e^5\right )^2 (-3+x)}+\frac {3+7 e^5+3 e^{10}}{\left (3+e^5\right ) \left (e^5+x\right )^2}-\frac {3 \left (6+6 e^5+e^{10}\right )}{\left (3+e^5\right )^2 \left (e^5+x\right )}\right ) \, dx\\ &=-\frac {3 e^5 \left (2+e^5\right )}{\left (3+e^5\right ) \left (e^5+x\right )}-\frac {3+7 e^5+3 e^{10}}{\left (3+e^5\right ) \left (e^5+x\right )}+\frac {3+16 e^5+7 e^{10}}{\left (3+e^5\right ) \left (e^5+x\right )}-\frac {9 \log (3-x)}{\left (3+e^5\right )^2}-\frac {6 e^5 \log (3-x)}{\left (3+e^5\right )^2}-\frac {e^{10} \log (3-x)}{\left (3+e^5\right )^2}-2 \log (x)+\frac {\log (x)}{e^5}-\frac {x \log (x)}{e^5 \left (e^5+x\right )}+\frac {\log \left (e^5+x\right )}{e^5}-\frac {\left (9+6 e^5-5 e^{10}\right ) \log \left (e^5+x\right )}{e^5 \left (3+e^5\right )^2}+\frac {3 \left (6+4 e^5+e^{10}\right ) \log \left (e^5+x\right )}{\left (3+e^5\right )^2}-\frac {3 \left (6+6 e^5+e^{10}\right ) \log \left (e^5+x\right )}{\left (3+e^5\right )^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 34, normalized size = 1.21 \begin {gather*} \frac {e^5}{e^5+x}-\log (3-x)-2 \log (x)+\frac {\log (x)}{e^5+x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.72, size = 34, normalized size = 1.21 \begin {gather*} -\frac {{\left (x + e^{5}\right )} \log \left (x - 3\right ) + {\left (2 \, x + 2 \, e^{5} - 1\right )} \log \relax (x) - e^{5}}{x + e^{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.54, size = 41, normalized size = 1.46 \begin {gather*} -\frac {x \log \left (x - 3\right ) + e^{5} \log \left (x - 3\right ) + 2 \, x \log \relax (x) + 2 \, e^{5} \log \relax (x) - e^{5} - \log \relax (x)}{x + e^{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.33, size = 32, normalized size = 1.14
method | result | size |
norman | \(\frac {\left (1-2 \,{\mathrm e}^{5}\right ) \ln \relax (x )-2 x \ln \relax (x )+{\mathrm e}^{5}}{{\mathrm e}^{5}+x}-\ln \left (x -3\right )\) | \(32\) |
risch | \(\frac {\ln \relax (x )}{{\mathrm e}^{5}+x}-\frac {2 \ln \left (-x \right ) {\mathrm e}^{5}+\ln \left (x -3\right ) {\mathrm e}^{5}+2 \ln \left (-x \right ) x +\ln \left (x -3\right ) x -{\mathrm e}^{5}}{{\mathrm e}^{5}+x}\) | \(52\) |
default | \(-\frac {\ln \relax (x ) \left (\ln \left (\frac {{\mathrm e}^{5}-\sqrt {\left ({\mathrm e}^{5}\right )^{2}-{\mathrm e}^{10}}+x}{{\mathrm e}^{5}-\sqrt {\left ({\mathrm e}^{5}\right )^{2}-{\mathrm e}^{10}}}\right )-\ln \left (\frac {{\mathrm e}^{5}+\sqrt {\left ({\mathrm e}^{5}\right )^{2}-{\mathrm e}^{10}}+x}{{\mathrm e}^{5}+\sqrt {\left ({\mathrm e}^{5}\right )^{2}-{\mathrm e}^{10}}}\right )\right )}{2 \sqrt {\left ({\mathrm e}^{5}\right )^{2}-{\mathrm e}^{10}}}-\frac {\dilog \left (\frac {{\mathrm e}^{5}-\sqrt {\left ({\mathrm e}^{5}\right )^{2}-{\mathrm e}^{10}}+x}{{\mathrm e}^{5}-\sqrt {\left ({\mathrm e}^{5}\right )^{2}-{\mathrm e}^{10}}}\right )}{2 \sqrt {\left ({\mathrm e}^{5}\right )^{2}-{\mathrm e}^{10}}}+\frac {\dilog \left (\frac {{\mathrm e}^{5}+\sqrt {\left ({\mathrm e}^{5}\right )^{2}-{\mathrm e}^{10}}+x}{{\mathrm e}^{5}+\sqrt {\left ({\mathrm e}^{5}\right )^{2}-{\mathrm e}^{10}}}\right )}{2 \sqrt {\left ({\mathrm e}^{5}\right )^{2}-{\mathrm e}^{10}}}+\frac {{\mathrm e}^{5}}{{\mathrm e}^{5}+x}-\frac {\ln \left ({\mathrm e}^{5}+x \right )}{{\mathrm e}^{5}}-2 \ln \relax (x )+\frac {\ln \relax (x )}{{\mathrm e}^{5}}-\ln \left (x -3\right )\) | \(223\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.65, size = 443, normalized size = 15.82 \begin {gather*} -2 \, {\left (e^{\left (-10\right )} \log \relax (x) - \frac {3 \, {\left (2 \, e^{5} + 3\right )} \log \left (x + e^{5}\right )}{e^{20} + 6 \, e^{15} + 9 \, e^{10}} - \frac {\log \left (x - 3\right )}{e^{10} + 6 \, e^{5} + 9} + \frac {3}{x {\left (e^{10} + 3 \, e^{5}\right )} + e^{15} + 3 \, e^{10}}\right )} e^{10} + 3 \, {\left (\frac {\log \left (x + e^{5}\right )}{e^{10} + 6 \, e^{5} + 9} - \frac {\log \left (x - 3\right )}{e^{10} + 6 \, e^{5} + 9} - \frac {1}{x {\left (e^{5} + 3\right )} + e^{10} + 3 \, e^{5}}\right )} e^{10} + {\left (e^{\left (-10\right )} \log \relax (x) - \frac {3 \, {\left (2 \, e^{5} + 3\right )} \log \left (x + e^{5}\right )}{e^{20} + 6 \, e^{15} + 9 \, e^{10}} - \frac {\log \left (x - 3\right )}{e^{10} + 6 \, e^{5} + 9} + \frac {3}{x {\left (e^{10} + 3 \, e^{5}\right )} + e^{15} + 3 \, e^{10}}\right )} e^{5} + 7 \, {\left (\frac {e^{5}}{x {\left (e^{5} + 3\right )} + e^{10} + 3 \, e^{5}} + \frac {3 \, \log \left (x + e^{5}\right )}{e^{10} + 6 \, e^{5} + 9} - \frac {3 \, \log \left (x - 3\right )}{e^{10} + 6 \, e^{5} + 9}\right )} e^{5} - 16 \, {\left (\frac {\log \left (x + e^{5}\right )}{e^{10} + 6 \, e^{5} + 9} - \frac {\log \left (x - 3\right )}{e^{10} + 6 \, e^{5} + 9} - \frac {1}{x {\left (e^{5} + 3\right )} + e^{10} + 3 \, e^{5}}\right )} e^{5} + e^{\left (-5\right )} \log \left (x + e^{5}\right ) - e^{\left (-5\right )} \log \relax (x) - \frac {3 \, {\left (e^{10} + 6 \, e^{5}\right )} \log \left (x + e^{5}\right )}{e^{10} + 6 \, e^{5} + 9} - \frac {3 \, e^{10}}{x {\left (e^{5} + 3\right )} + e^{10} + 3 \, e^{5}} - \frac {7 \, e^{5}}{x {\left (e^{5} + 3\right )} + e^{10} + 3 \, e^{5}} - \frac {18 \, \log \left (x + e^{5}\right )}{e^{10} + 6 \, e^{5} + 9} - \frac {9 \, \log \left (x - 3\right )}{e^{10} + 6 \, e^{5} + 9} + \frac {\log \relax (x)}{x + e^{5}} - \frac {3}{x {\left (e^{5} + 3\right )} + e^{10} + 3 \, e^{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.67, size = 29, normalized size = 1.04 \begin {gather*} \frac {{\mathrm {e}}^5}{x+{\mathrm {e}}^5}-2\,\ln \relax (x)-\ln \left (x-3\right )+\frac {\ln \relax (x)}{x+{\mathrm {e}}^5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.75, size = 26, normalized size = 0.93 \begin {gather*} - 2 \log {\relax (x )} - \log {\left (x - 3 \right )} + \frac {\log {\relax (x )}}{x + e^{5}} + \frac {e^{5}}{x + e^{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________