Optimal. Leaf size=31 \[ \frac {x}{-5+\log \left (\log \left (\frac {e^{2-e^4}}{\log \left (-4-\frac {e^2}{x}\right )}\right )\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.94, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-e^2+\left (-5 e^2-20 x\right ) \log \left (\frac {-e^2-4 x}{x}\right ) \log \left (\frac {e^{2-e^4}}{\log \left (\frac {-e^2-4 x}{x}\right )}\right )+\left (e^2+4 x\right ) \log \left (\frac {-e^2-4 x}{x}\right ) \log \left (\frac {e^{2-e^4}}{\log \left (\frac {-e^2-4 x}{x}\right )}\right ) \log \left (\log \left (\frac {e^{2-e^4}}{\log \left (\frac {-e^2-4 x}{x}\right )}\right )\right )}{\left (25 e^2+100 x\right ) \log \left (\frac {-e^2-4 x}{x}\right ) \log \left (\frac {e^{2-e^4}}{\log \left (\frac {-e^2-4 x}{x}\right )}\right )+\left (-10 e^2-40 x\right ) \log \left (\frac {-e^2-4 x}{x}\right ) \log \left (\frac {e^{2-e^4}}{\log \left (\frac {-e^2-4 x}{x}\right )}\right ) \log \left (\log \left (\frac {e^{2-e^4}}{\log \left (\frac {-e^2-4 x}{x}\right )}\right )\right )+\left (e^2+4 x\right ) \log \left (\frac {-e^2-4 x}{x}\right ) \log \left (\frac {e^{2-e^4}}{\log \left (\frac {-e^2-4 x}{x}\right )}\right ) \log ^2\left (\log \left (\frac {e^{2-e^4}}{\log \left (\frac {-e^2-4 x}{x}\right )}\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-e^2-\left (e^2+4 x\right ) \log \left (-4-\frac {e^2}{x}\right ) \left (-2+e^4-\log \left (\frac {1}{\log \left (-4-\frac {e^2}{x}\right )}\right )\right ) \left (-5+\log \left (2-e^4+\log \left (\frac {1}{\log \left (-4-\frac {e^2}{x}\right )}\right )\right )\right )}{\left (e^2+4 x\right ) \log \left (-4-\frac {e^2}{x}\right ) \left (2 \left (1-\frac {e^4}{2}\right )+\log \left (\frac {1}{\log \left (-4-\frac {e^2}{x}\right )}\right )\right ) \left (5-\log \left (2-e^4+\log \left (\frac {1}{\log \left (-4-\frac {e^2}{x}\right )}\right )\right )\right )^2} \, dx\\ &=\int \frac {-5+\frac {e^2}{\left (e^2+4 x\right ) \log \left (-4-\frac {e^2}{x}\right ) \left (-2+e^4-\log \left (\frac {1}{\log \left (-4-\frac {e^2}{x}\right )}\right )\right )}+\log \left (2-e^4+\log \left (\frac {1}{\log \left (-4-\frac {e^2}{x}\right )}\right )\right )}{\left (5-\log \left (2-e^4+\log \left (\frac {1}{\log \left (-4-\frac {e^2}{x}\right )}\right )\right )\right )^2} \, dx\\ &=\int \left (\frac {e^2}{\left (-e^2-4 x\right ) \log \left (-4-\frac {e^2}{x}\right ) \left (2 \left (1-\frac {e^4}{2}\right )+\log \left (\frac {1}{\log \left (-4-\frac {e^2}{x}\right )}\right )\right ) \left (5-\log \left (2-e^4+\log \left (\frac {1}{\log \left (-4-\frac {e^2}{x}\right )}\right )\right )\right )^2}+\frac {1}{-5+\log \left (2-e^4+\log \left (\frac {1}{\log \left (-4-\frac {e^2}{x}\right )}\right )\right )}\right ) \, dx\\ &=e^2 \int \frac {1}{\left (-e^2-4 x\right ) \log \left (-4-\frac {e^2}{x}\right ) \left (2 \left (1-\frac {e^4}{2}\right )+\log \left (\frac {1}{\log \left (-4-\frac {e^2}{x}\right )}\right )\right ) \left (5-\log \left (2-e^4+\log \left (\frac {1}{\log \left (-4-\frac {e^2}{x}\right )}\right )\right )\right )^2} \, dx+\int \frac {1}{-5+\log \left (2-e^4+\log \left (\frac {1}{\log \left (-4-\frac {e^2}{x}\right )}\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.18, size = 28, normalized size = 0.90 \begin {gather*} \frac {x}{-5+\log \left (2-e^4+\log \left (\frac {1}{\log \left (-4-\frac {e^2}{x}\right )}\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 30, normalized size = 0.97 \begin {gather*} \frac {x}{\log \left (\log \left (\frac {e^{\left (-e^{4} + 2\right )}}{\log \left (-\frac {4 \, x + e^{2}}{x}\right )}\right )\right ) - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.15, size = 0, normalized size = 0.00 \[\int \frac {\left ({\mathrm e}^{2}+4 x \right ) \ln \left (\frac {-{\mathrm e}^{2}-4 x}{x}\right ) \ln \left (\frac {{\mathrm e}^{2-{\mathrm e}^{4}}}{\ln \left (\frac {-{\mathrm e}^{2}-4 x}{x}\right )}\right ) \ln \left (\ln \left (\frac {{\mathrm e}^{2-{\mathrm e}^{4}}}{\ln \left (\frac {-{\mathrm e}^{2}-4 x}{x}\right )}\right )\right )+\left (-5 \,{\mathrm e}^{2}-20 x \right ) \ln \left (\frac {-{\mathrm e}^{2}-4 x}{x}\right ) \ln \left (\frac {{\mathrm e}^{2-{\mathrm e}^{4}}}{\ln \left (\frac {-{\mathrm e}^{2}-4 x}{x}\right )}\right )-{\mathrm e}^{2}}{\left ({\mathrm e}^{2}+4 x \right ) \ln \left (\frac {-{\mathrm e}^{2}-4 x}{x}\right ) \ln \left (\frac {{\mathrm e}^{2-{\mathrm e}^{4}}}{\ln \left (\frac {-{\mathrm e}^{2}-4 x}{x}\right )}\right ) \ln \left (\ln \left (\frac {{\mathrm e}^{2-{\mathrm e}^{4}}}{\ln \left (\frac {-{\mathrm e}^{2}-4 x}{x}\right )}\right )\right )^{2}+\left (-10 \,{\mathrm e}^{2}-40 x \right ) \ln \left (\frac {-{\mathrm e}^{2}-4 x}{x}\right ) \ln \left (\frac {{\mathrm e}^{2-{\mathrm e}^{4}}}{\ln \left (\frac {-{\mathrm e}^{2}-4 x}{x}\right )}\right ) \ln \left (\ln \left (\frac {{\mathrm e}^{2-{\mathrm e}^{4}}}{\ln \left (\frac {-{\mathrm e}^{2}-4 x}{x}\right )}\right )\right )+\left (25 \,{\mathrm e}^{2}+100 x \right ) \ln \left (\frac {-{\mathrm e}^{2}-4 x}{x}\right ) \ln \left (\frac {{\mathrm e}^{2-{\mathrm e}^{4}}}{\ln \left (\frac {-{\mathrm e}^{2}-4 x}{x}\right )}\right )}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.73, size = 30, normalized size = 0.97 \begin {gather*} \frac {x}{\log \left (-e^{4} - \log \left (-\log \relax (x) + \log \left (-4 \, x - e^{2}\right )\right ) + 2\right ) - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.38, size = 30, normalized size = 0.97 \begin {gather*} \frac {x}{\ln \left (\ln \left (\frac {{\mathrm {e}}^{-{\mathrm {e}}^4}\,{\mathrm {e}}^2}{\ln \left (-\frac {4\,x+{\mathrm {e}}^2}{x}\right )}\right )\right )-5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.56, size = 26, normalized size = 0.84 \begin {gather*} \frac {x}{\log {\left (\log {\left (\frac {1}{e^{-2 + e^{4}} \log {\left (\frac {- 4 x - e^{2}}{x} \right )}} \right )} \right )} - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________