Optimal. Leaf size=21 \[ e^{2 x}-\frac {60}{x (-5+\log (2+4 x))} \]
________________________________________________________________________________________
Rubi [F] time = 3.88, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-300-480 x+e^{2 x} \left (50 x^2+100 x^3\right )+\left (60+120 x+e^{2 x} \left (-20 x^2-40 x^3\right )\right ) \log (2+4 x)+e^{2 x} \left (2 x^2+4 x^3\right ) \log ^2(2+4 x)}{25 x^2+50 x^3+\left (-10 x^2-20 x^3\right ) \log (2+4 x)+\left (x^2+2 x^3\right ) \log ^2(2+4 x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-300-480 x+e^{2 x} \left (50 x^2+100 x^3\right )+\left (60+120 x+e^{2 x} \left (-20 x^2-40 x^3\right )\right ) \log (2+4 x)+e^{2 x} \left (2 x^2+4 x^3\right ) \log ^2(2+4 x)}{x^2 (1+2 x) (5-\log (2+4 x))^2} \, dx\\ &=\int \left (2 e^{2 x}-\frac {300}{x^2 (1+2 x) (-5+\log (2+4 x))^2}-\frac {480}{x (1+2 x) (-5+\log (2+4 x))^2}+\frac {60 \log (2+4 x)}{x^2 (1+2 x) (-5+\log (2+4 x))^2}+\frac {120 \log (2+4 x)}{x (1+2 x) (-5+\log (2+4 x))^2}\right ) \, dx\\ &=2 \int e^{2 x} \, dx+60 \int \frac {\log (2+4 x)}{x^2 (1+2 x) (-5+\log (2+4 x))^2} \, dx+120 \int \frac {\log (2+4 x)}{x (1+2 x) (-5+\log (2+4 x))^2} \, dx-300 \int \frac {1}{x^2 (1+2 x) (-5+\log (2+4 x))^2} \, dx-480 \int \frac {1}{x (1+2 x) (-5+\log (2+4 x))^2} \, dx\\ &=e^{2 x}+60 \int \left (\frac {5}{x^2 (1+2 x) (-5+\log (2+4 x))^2}+\frac {1}{x^2 (1+2 x) (-5+\log (2+4 x))}\right ) \, dx+120 \int \left (\frac {5}{x (1+2 x) (-5+\log (2+4 x))^2}+\frac {1}{x (1+2 x) (-5+\log (2+4 x))}\right ) \, dx-300 \int \left (\frac {1}{x^2 (-5+\log (2+4 x))^2}-\frac {2}{x (-5+\log (2+4 x))^2}+\frac {4}{(1+2 x) (-5+\log (2+4 x))^2}\right ) \, dx-480 \int \left (\frac {1}{x (-5+\log (2+4 x))^2}-\frac {2}{(1+2 x) (-5+\log (2+4 x))^2}\right ) \, dx\\ &=e^{2 x}+60 \int \frac {1}{x^2 (1+2 x) (-5+\log (2+4 x))} \, dx+120 \int \frac {1}{x (1+2 x) (-5+\log (2+4 x))} \, dx-300 \int \frac {1}{x^2 (-5+\log (2+4 x))^2} \, dx+300 \int \frac {1}{x^2 (1+2 x) (-5+\log (2+4 x))^2} \, dx-480 \int \frac {1}{x (-5+\log (2+4 x))^2} \, dx+600 \int \frac {1}{x (-5+\log (2+4 x))^2} \, dx+600 \int \frac {1}{x (1+2 x) (-5+\log (2+4 x))^2} \, dx+960 \int \frac {1}{(1+2 x) (-5+\log (2+4 x))^2} \, dx-1200 \int \frac {1}{(1+2 x) (-5+\log (2+4 x))^2} \, dx\\ &=e^{2 x}+60 \int \left (\frac {1}{x^2 (-5+\log (2+4 x))}-\frac {2}{x (-5+\log (2+4 x))}+\frac {4}{(1+2 x) (-5+\log (2+4 x))}\right ) \, dx+120 \int \left (\frac {1}{x (-5+\log (2+4 x))}-\frac {2}{(1+2 x) (-5+\log (2+4 x))}\right ) \, dx+240 \operatorname {Subst}\left (\int \frac {2}{x (-5+\log (x))^2} \, dx,x,2+4 x\right )+300 \int \left (\frac {1}{x^2 (-5+\log (2+4 x))^2}-\frac {2}{x (-5+\log (2+4 x))^2}+\frac {4}{(1+2 x) (-5+\log (2+4 x))^2}\right ) \, dx-300 \int \frac {1}{x^2 (-5+\log (2+4 x))^2} \, dx-300 \operatorname {Subst}\left (\int \frac {2}{x (-5+\log (x))^2} \, dx,x,2+4 x\right )-480 \int \frac {1}{x (-5+\log (2+4 x))^2} \, dx+600 \int \left (\frac {1}{x (-5+\log (2+4 x))^2}-\frac {2}{(1+2 x) (-5+\log (2+4 x))^2}\right ) \, dx+600 \int \frac {1}{x (-5+\log (2+4 x))^2} \, dx\\ &=e^{2 x}+60 \int \frac {1}{x^2 (-5+\log (2+4 x))} \, dx-480 \int \frac {1}{x (-5+\log (2+4 x))^2} \, dx+480 \operatorname {Subst}\left (\int \frac {1}{x (-5+\log (x))^2} \, dx,x,2+4 x\right )+600 \int \frac {1}{x (-5+\log (2+4 x))^2} \, dx-600 \operatorname {Subst}\left (\int \frac {1}{x (-5+\log (x))^2} \, dx,x,2+4 x\right )\\ &=e^{2 x}+60 \int \frac {1}{x^2 (-5+\log (2+4 x))} \, dx-480 \int \frac {1}{x (-5+\log (2+4 x))^2} \, dx+480 \operatorname {Subst}\left (\int \frac {1}{x^2} \, dx,x,-5+\log (2+4 x)\right )+600 \int \frac {1}{x (-5+\log (2+4 x))^2} \, dx-600 \operatorname {Subst}\left (\int \frac {1}{x^2} \, dx,x,-5+\log (2+4 x)\right )\\ &=e^{2 x}-\frac {120}{5-\log (2+4 x)}+60 \int \frac {1}{x^2 (-5+\log (2+4 x))} \, dx-480 \int \frac {1}{x (-5+\log (2+4 x))^2} \, dx+600 \int \frac {1}{x (-5+\log (2+4 x))^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 27, normalized size = 1.29 \begin {gather*} 2 \left (\frac {e^{2 x}}{2}-\frac {30}{x (-5+\log (2+4 x))}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 36, normalized size = 1.71 \begin {gather*} \frac {x e^{\left (2 \, x\right )} \log \left (4 \, x + 2\right ) - 5 \, x e^{\left (2 \, x\right )} - 60}{x \log \left (4 \, x + 2\right ) - 5 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.85, size = 36, normalized size = 1.71 \begin {gather*} \frac {x e^{\left (2 \, x\right )} \log \left (4 \, x + 2\right ) - 5 \, x e^{\left (2 \, x\right )} - 60}{x \log \left (4 \, x + 2\right ) - 5 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.25, size = 21, normalized size = 1.00
method | result | size |
risch | \({\mathrm e}^{2 x}-\frac {60}{\left (\ln \left (4 x +2\right )-5\right ) x}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.64, size = 42, normalized size = 2.00 \begin {gather*} \frac {x {\left (\log \relax (2) - 5\right )} e^{\left (2 \, x\right )} + x e^{\left (2 \, x\right )} \log \left (2 \, x + 1\right ) - 60}{x {\left (\log \relax (2) - 5\right )} + x \log \left (2 \, x + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.48, size = 37, normalized size = 1.76 \begin {gather*} -\frac {5\,x\,{\mathrm {e}}^{2\,x}-x\,{\mathrm {e}}^{2\,x}\,\ln \left (4\,x+2\right )+60}{x\,\left (\ln \left (4\,x+2\right )-5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.39, size = 17, normalized size = 0.81 \begin {gather*} e^{2 x} - \frac {60}{x \log {\left (4 x + 2 \right )} - 5 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________