Optimal. Leaf size=25 \[ \frac {5 e^{3+x} (-4+2 x)}{x^2 \left (3+9 \log ^2(4)\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.13, antiderivative size = 45, normalized size of antiderivative = 1.80, number of steps used = 10, number of rules used = 5, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.152, Rules used = {6, 12, 2199, 2177, 2178} \begin {gather*} \frac {10 e^{x+3}}{3 x \left (1+3 \log ^2(4)\right )}-\frac {20 e^{x+3}}{3 x^2 \left (1+3 \log ^2(4)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 2177
Rule 2178
Rule 2199
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{3+x} \left (40-30 x+10 x^2\right )}{x^3 \left (3+9 \log ^2(4)\right )} \, dx\\ &=\frac {\int \frac {e^{3+x} \left (40-30 x+10 x^2\right )}{x^3} \, dx}{3 \left (1+3 \log ^2(4)\right )}\\ &=\frac {\int \left (\frac {40 e^{3+x}}{x^3}-\frac {30 e^{3+x}}{x^2}+\frac {10 e^{3+x}}{x}\right ) \, dx}{3 \left (1+3 \log ^2(4)\right )}\\ &=\frac {10 \int \frac {e^{3+x}}{x} \, dx}{3 \left (1+3 \log ^2(4)\right )}-\frac {10 \int \frac {e^{3+x}}{x^2} \, dx}{1+3 \log ^2(4)}+\frac {40 \int \frac {e^{3+x}}{x^3} \, dx}{3 \left (1+3 \log ^2(4)\right )}\\ &=-\frac {20 e^{3+x}}{3 x^2 \left (1+3 \log ^2(4)\right )}+\frac {10 e^{3+x}}{x \left (1+3 \log ^2(4)\right )}+\frac {10 e^3 \text {Ei}(x)}{3 \left (1+3 \log ^2(4)\right )}+\frac {20 \int \frac {e^{3+x}}{x^2} \, dx}{3 \left (1+3 \log ^2(4)\right )}-\frac {10 \int \frac {e^{3+x}}{x} \, dx}{1+3 \log ^2(4)}\\ &=-\frac {20 e^{3+x}}{3 x^2 \left (1+3 \log ^2(4)\right )}+\frac {10 e^{3+x}}{3 x \left (1+3 \log ^2(4)\right )}-\frac {20 e^3 \text {Ei}(x)}{3 \left (1+3 \log ^2(4)\right )}+\frac {20 \int \frac {e^{3+x}}{x} \, dx}{3 \left (1+3 \log ^2(4)\right )}\\ &=-\frac {20 e^{3+x}}{3 x^2 \left (1+3 \log ^2(4)\right )}+\frac {10 e^{3+x}}{3 x \left (1+3 \log ^2(4)\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 25, normalized size = 1.00 \begin {gather*} \frac {10 e^{3+x} (-2+x)}{3 x^2 \left (1+3 \log ^2(4)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.49, size = 24, normalized size = 0.96 \begin {gather*} \frac {10 \, {\left (x - 2\right )} e^{\left (x + 3\right )}}{3 \, {\left (12 \, x^{2} \log \relax (2)^{2} + x^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.27, size = 30, normalized size = 1.20 \begin {gather*} \frac {10 \, {\left (x e^{\left (x + 3\right )} - 2 \, e^{\left (x + 3\right )}\right )}}{3 \, {\left (12 \, x^{2} \log \relax (2)^{2} + x^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 23, normalized size = 0.92
method | result | size |
gosper | \(\frac {10 \,{\mathrm e}^{3+x} \left (x -2\right )}{3 x^{2} \left (12 \ln \relax (2)^{2}+1\right )}\) | \(23\) |
risch | \(\frac {10 \,{\mathrm e}^{3+x} \left (x -2\right )}{3 x^{2} \left (12 \ln \relax (2)^{2}+1\right )}\) | \(23\) |
default | \(\frac {10 \,{\mathrm e}^{3} \left (-\frac {2 \,{\mathrm e}^{x}}{\left (12 \ln \relax (2)^{2}+1\right ) x^{2}}+\frac {{\mathrm e}^{x}}{x \left (12 \ln \relax (2)^{2}+1\right )}\right )}{3}\) | \(39\) |
norman | \(\frac {-\frac {20 \,{\mathrm e}^{3} {\mathrm e}^{x}}{3 \left (12 \ln \relax (2)^{2}+1\right )}+\frac {10 \,{\mathrm e}^{3} x \,{\mathrm e}^{x}}{3 \left (12 \ln \relax (2)^{2}+1\right )}}{x^{2}}\) | \(39\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.64, size = 55, normalized size = 2.20 \begin {gather*} \frac {10 \, {\rm Ei}\relax (x) e^{3}}{3 \, {\left (12 \, \log \relax (2)^{2} + 1\right )}} - \frac {10 \, e^{3} \Gamma \left (-1, -x\right )}{12 \, \log \relax (2)^{2} + 1} - \frac {40 \, e^{3} \Gamma \left (-2, -x\right )}{3 \, {\left (12 \, \log \relax (2)^{2} + 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.09, size = 29, normalized size = 1.16 \begin {gather*} -\frac {20\,{\mathrm {e}}^{x+3}-10\,x\,{\mathrm {e}}^{x+3}}{3\,x^2\,\left (12\,{\ln \relax (2)}^2+1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 29, normalized size = 1.16 \begin {gather*} \frac {\left (10 x e^{3} - 20 e^{3}\right ) e^{x}}{3 x^{2} + 36 x^{2} \log {\relax (2 )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________