Optimal. Leaf size=24 \[ x \log \left (\frac {4}{3 x+\frac {\log (x)}{2}+\log (4+\log (2 x))}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.51, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-6-24 x+(-1-6 x) \log (2 x)+(24 x+4 \log (x)+(6 x+\log (x)) \log (2 x)+(8+2 \log (2 x)) \log (4+\log (2 x))) \log \left (\frac {8}{6 x+\log (x)+2 \log (4+\log (2 x))}\right )}{24 x+4 \log (x)+(6 x+\log (x)) \log (2 x)+(8+2 \log (2 x)) \log (4+\log (2 x))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-6-24 x+(-1-6 x) \log (2 x)+(24 x+4 \log (x)+(6 x+\log (x)) \log (2 x)+(8+2 \log (2 x)) \log (4+\log (2 x))) \log \left (\frac {8}{6 x+\log (x)+2 \log (4+\log (2 x))}\right )}{(4+\log (2 x)) (6 x+\log (x)+2 \log (4+\log (2 x)))} \, dx\\ &=\int \left (\frac {-6-24 x-\log (2 x)-6 x \log (2 x)}{(4+\log (2 x)) (6 x+\log (x)+2 \log (4+\log (2 x)))}+\log \left (\frac {8}{6 x+\log (x)+2 \log (4+\log (2 x))}\right )\right ) \, dx\\ &=\int \frac {-6-24 x-\log (2 x)-6 x \log (2 x)}{(4+\log (2 x)) (6 x+\log (x)+2 \log (4+\log (2 x)))} \, dx+\int \log \left (\frac {8}{6 x+\log (x)+2 \log (4+\log (2 x))}\right ) \, dx\\ &=x \log \left (\frac {8}{6 x+\log (x)+2 \log (4+\log (2 x))}\right )+\int \frac {x \left (6+\frac {1+\frac {2}{4+\log (2 x)}}{x}\right )}{6 x+\log (x)+2 \log (4+\log (2 x))} \, dx+\int \left (-\frac {6}{(4+\log (2 x)) (6 x+\log (x)+2 \log (4+\log (2 x)))}-\frac {24 x}{(4+\log (2 x)) (6 x+\log (x)+2 \log (4+\log (2 x)))}-\frac {\log (2 x)}{(4+\log (2 x)) (6 x+\log (x)+2 \log (4+\log (2 x)))}-\frac {6 x \log (2 x)}{(4+\log (2 x)) (6 x+\log (x)+2 \log (4+\log (2 x)))}\right ) \, dx\\ &=x \log \left (\frac {8}{6 x+\log (x)+2 \log (4+\log (2 x))}\right )-6 \int \frac {1}{(4+\log (2 x)) (6 x+\log (x)+2 \log (4+\log (2 x)))} \, dx-6 \int \frac {x \log (2 x)}{(4+\log (2 x)) (6 x+\log (x)+2 \log (4+\log (2 x)))} \, dx-24 \int \frac {x}{(4+\log (2 x)) (6 x+\log (x)+2 \log (4+\log (2 x)))} \, dx-\int \frac {\log (2 x)}{(4+\log (2 x)) (6 x+\log (x)+2 \log (4+\log (2 x)))} \, dx+\int \left (\frac {1}{6 x+\log (x)+2 \log (4+\log (2 x))}+\frac {6 x}{6 x+\log (x)+2 \log (4+\log (2 x))}+\frac {2}{(4+\log (2 x)) (6 x+\log (x)+2 \log (4+\log (2 x)))}\right ) \, dx\\ &=x \log \left (\frac {8}{6 x+\log (x)+2 \log (4+\log (2 x))}\right )+2 \int \frac {1}{(4+\log (2 x)) (6 x+\log (x)+2 \log (4+\log (2 x)))} \, dx+6 \int \frac {x}{6 x+\log (x)+2 \log (4+\log (2 x))} \, dx-6 \int \frac {1}{(4+\log (2 x)) (6 x+\log (x)+2 \log (4+\log (2 x)))} \, dx-6 \int \frac {x \log (2 x)}{(4+\log (2 x)) (6 x+\log (x)+2 \log (4+\log (2 x)))} \, dx-24 \int \frac {x}{(4+\log (2 x)) (6 x+\log (x)+2 \log (4+\log (2 x)))} \, dx+\int \frac {1}{6 x+\log (x)+2 \log (4+\log (2 x))} \, dx-\int \frac {\log (2 x)}{(4+\log (2 x)) (6 x+\log (x)+2 \log (4+\log (2 x)))} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 22, normalized size = 0.92 \begin {gather*} x \log \left (\frac {8}{6 x+\log (x)+2 \log (4+\log (2 x))}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 22, normalized size = 0.92 \begin {gather*} x \log \left (\frac {8}{6 \, x + \log \relax (x) + 2 \, \log \left (\log \relax (2) + \log \relax (x) + 4\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.49, size = 25, normalized size = 1.04 \begin {gather*} 3 \, x \log \relax (2) - x \log \left (6 \, x + \log \relax (x) + 2 \, \log \left (\log \relax (2) + \log \relax (x) + 4\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.26, size = 31, normalized size = 1.29
method | result | size |
risch | \(-x \ln \left (\frac {\ln \left (\ln \relax (2)+\ln \relax (x )+4\right )}{3}+\frac {\ln \relax (x )}{6}+x \right )-x \ln \relax (3)+2 x \ln \relax (2)\) | \(31\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.95, size = 25, normalized size = 1.04 \begin {gather*} 3 \, x \log \relax (2) - x \log \left (6 \, x + \log \relax (x) + 2 \, \log \left (\log \relax (2) + \log \relax (x) + 4\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.49, size = 25, normalized size = 1.04 \begin {gather*} x\,\left (\ln \left (\frac {1}{6\,x+2\,\ln \left (\ln \left (2\,x\right )+4\right )+\ln \relax (x)}\right )+3\,\ln \relax (2)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 9.92, size = 22, normalized size = 0.92 \begin {gather*} x \log {\left (\frac {8}{6 x + \log {\relax (x )} + 2 \log {\left (\log {\relax (x )} + \log {\relax (2 )} + 4 \right )}} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________