Optimal. Leaf size=28 \[ 1+e^{\frac {x^2}{\left (e^{\left (81+e^2\right ) \left (\frac {8}{3}-x\right )}+\log (x)\right )^2}} \]
________________________________________________________________________________________
Rubi [F] time = 27.46, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {x^2}{e^{\frac {2}{3} \left (648+e^2 (8-3 x)-243 x\right )}+2 e^{\frac {1}{3} \left (648+e^2 (8-3 x)-243 x\right )} \log (x)+\log ^2(x)}\right ) \left (-2 x+e^{\frac {1}{3} \left (648+e^2 (8-3 x)-243 x\right )} \left (2 x+162 x^2+2 e^2 x^2\right )+2 x \log (x)\right )}{e^{648+e^2 (8-3 x)-243 x}+3 e^{\frac {2}{3} \left (648+e^2 (8-3 x)-243 x\right )} \log (x)+3 e^{\frac {1}{3} \left (648+e^2 (8-3 x)-243 x\right )} \log ^2(x)+\log ^3(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 \exp \left (162 x+\frac {e^{162 x} x^2}{\left (e^{216+e^2 \left (\frac {8}{3}-x\right )}+e^{81 x} \log (x)\right )^2}\right ) x \left (-e^{81 x}+e^{218+e^2 \left (\frac {8}{3}-x\right )} x+e^{216+e^2 \left (\frac {8}{3}-x\right )} (1+81 x)+e^{81 x} \log (x)\right )}{\left (e^{216+e^2 \left (\frac {8}{3}-x\right )}+e^{81 x} \log (x)\right )^3} \, dx\\ &=2 \int \frac {\exp \left (162 x+\frac {e^{162 x} x^2}{\left (e^{216+e^2 \left (\frac {8}{3}-x\right )}+e^{81 x} \log (x)\right )^2}\right ) x \left (-e^{81 x}+e^{218+e^2 \left (\frac {8}{3}-x\right )} x+e^{216+e^2 \left (\frac {8}{3}-x\right )} (1+81 x)+e^{81 x} \log (x)\right )}{\left (e^{216+e^2 \left (\frac {8}{3}-x\right )}+e^{81 x} \log (x)\right )^3} \, dx\\ &=2 \int \left (\frac {\exp \left (162 x+\frac {e^{162 x} x^2}{\left (e^{216+e^2 \left (\frac {8}{3}-x\right )}+e^{81 x} \log (x)\right )^2}\right ) x (-1+\log (x))}{\log (x) \left (e^{216+e^2 \left (\frac {8}{3}-x\right )}+e^{81 x} \log (x)\right )^2}+\frac {\exp \left (\frac {8}{3} \left (81+e^2\right )+162 x-e^2 x+\frac {e^{162 x} x^2}{\left (e^{216+e^2 \left (\frac {8}{3}-x\right )}+e^{81 x} \log (x)\right )^2}\right ) x \left (1+81 \left (1+\frac {e^2}{81}\right ) x \log (x)\right )}{\log (x) \left (e^{216+e^2 \left (\frac {8}{3}-x\right )}+e^{81 x} \log (x)\right )^3}\right ) \, dx\\ &=2 \int \frac {\exp \left (162 x+\frac {e^{162 x} x^2}{\left (e^{216+e^2 \left (\frac {8}{3}-x\right )}+e^{81 x} \log (x)\right )^2}\right ) x (-1+\log (x))}{\log (x) \left (e^{216+e^2 \left (\frac {8}{3}-x\right )}+e^{81 x} \log (x)\right )^2} \, dx+2 \int \frac {\exp \left (\frac {8}{3} \left (81+e^2\right )+162 x-e^2 x+\frac {e^{162 x} x^2}{\left (e^{216+e^2 \left (\frac {8}{3}-x\right )}+e^{81 x} \log (x)\right )^2}\right ) x \left (1+81 \left (1+\frac {e^2}{81}\right ) x \log (x)\right )}{\log (x) \left (e^{216+e^2 \left (\frac {8}{3}-x\right )}+e^{81 x} \log (x)\right )^3} \, dx\\ &=2 \int \frac {\exp \left (\frac {8}{3} \left (81+e^2\right )+162 \left (1-\frac {e^2}{162}\right ) x+\frac {e^{162 x} x^2}{\left (e^{216+e^2 \left (\frac {8}{3}-x\right )}+e^{81 x} \log (x)\right )^2}\right ) x \left (1+81 \left (1+\frac {e^2}{81}\right ) x \log (x)\right )}{\log (x) \left (e^{216+e^2 \left (\frac {8}{3}-x\right )}+e^{81 x} \log (x)\right )^3} \, dx+2 \int \left (\frac {\exp \left (162 x+\frac {e^{162 x} x^2}{\left (e^{216+e^2 \left (\frac {8}{3}-x\right )}+e^{81 x} \log (x)\right )^2}\right ) x}{\left (e^{216+e^2 \left (\frac {8}{3}-x\right )}+e^{81 x} \log (x)\right )^2}-\frac {\exp \left (162 x+\frac {e^{162 x} x^2}{\left (e^{216+e^2 \left (\frac {8}{3}-x\right )}+e^{81 x} \log (x)\right )^2}\right ) x}{\log (x) \left (e^{216+e^2 \left (\frac {8}{3}-x\right )}+e^{81 x} \log (x)\right )^2}\right ) \, dx\\ &=2 \int \frac {\exp \left (162 x+\frac {e^{162 x} x^2}{\left (e^{216+e^2 \left (\frac {8}{3}-x\right )}+e^{81 x} \log (x)\right )^2}\right ) x}{\left (e^{216+e^2 \left (\frac {8}{3}-x\right )}+e^{81 x} \log (x)\right )^2} \, dx-2 \int \frac {\exp \left (162 x+\frac {e^{162 x} x^2}{\left (e^{216+e^2 \left (\frac {8}{3}-x\right )}+e^{81 x} \log (x)\right )^2}\right ) x}{\log (x) \left (e^{216+e^2 \left (\frac {8}{3}-x\right )}+e^{81 x} \log (x)\right )^2} \, dx+2 \int \left (\frac {\exp \left (\frac {8}{3} \left (81+e^2\right )+162 \left (1-\frac {e^2}{162}\right ) x+\frac {e^{162 x} x^2}{\left (e^{216+e^2 \left (\frac {8}{3}-x\right )}+e^{81 x} \log (x)\right )^2}\right ) \left (81+e^2\right ) x^2}{\left (e^{216+e^2 \left (\frac {8}{3}-x\right )}+e^{81 x} \log (x)\right )^3}+\frac {\exp \left (\frac {8}{3} \left (81+e^2\right )+162 \left (1-\frac {e^2}{162}\right ) x+\frac {e^{162 x} x^2}{\left (e^{216+e^2 \left (\frac {8}{3}-x\right )}+e^{81 x} \log (x)\right )^2}\right ) x}{\log (x) \left (e^{216+e^2 \left (\frac {8}{3}-x\right )}+e^{81 x} \log (x)\right )^3}\right ) \, dx\\ &=2 \int \frac {\exp \left (\frac {8}{3} \left (81+e^2\right )+162 \left (1-\frac {e^2}{162}\right ) x+\frac {e^{162 x} x^2}{\left (e^{216+e^2 \left (\frac {8}{3}-x\right )}+e^{81 x} \log (x)\right )^2}\right ) x}{\log (x) \left (e^{216+e^2 \left (\frac {8}{3}-x\right )}+e^{81 x} \log (x)\right )^3} \, dx+2 \int \frac {\exp \left (162 x+\frac {e^{162 x} x^2}{\left (e^{216+e^2 \left (\frac {8}{3}-x\right )}+e^{81 x} \log (x)\right )^2}\right ) x}{\left (e^{216+e^2 \left (\frac {8}{3}-x\right )}+e^{81 x} \log (x)\right )^2} \, dx-2 \int \frac {\exp \left (162 x+\frac {e^{162 x} x^2}{\left (e^{216+e^2 \left (\frac {8}{3}-x\right )}+e^{81 x} \log (x)\right )^2}\right ) x}{\log (x) \left (e^{216+e^2 \left (\frac {8}{3}-x\right )}+e^{81 x} \log (x)\right )^2} \, dx+\left (2 \left (81+e^2\right )\right ) \int \frac {\exp \left (\frac {8}{3} \left (81+e^2\right )+162 \left (1-\frac {e^2}{162}\right ) x+\frac {e^{162 x} x^2}{\left (e^{216+e^2 \left (\frac {8}{3}-x\right )}+e^{81 x} \log (x)\right )^2}\right ) x^2}{\left (e^{216+e^2 \left (\frac {8}{3}-x\right )}+e^{81 x} \log (x)\right )^3} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.39, size = 39, normalized size = 1.39 \begin {gather*} e^{\frac {e^{162 x} x^2}{\left (e^{216+\frac {8 e^2}{3}-e^2 x}+e^{81 x} \log (x)\right )^2}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.73, size = 46, normalized size = 1.64 \begin {gather*} e^{\left (\frac {x^{2}}{2 \, e^{\left (-\frac {1}{3} \, {\left (3 \, x - 8\right )} e^{2} - 81 \, x + 216\right )} \log \relax (x) + \log \relax (x)^{2} + e^{\left (-\frac {2}{3} \, {\left (3 \, x - 8\right )} e^{2} - 162 \, x + 432\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {2 \, {\left ({\left (x^{2} e^{2} + 81 \, x^{2} + x\right )} e^{\left (-\frac {1}{3} \, {\left (3 \, x - 8\right )} e^{2} - 81 \, x + 216\right )} + x \log \relax (x) - x\right )} e^{\left (\frac {x^{2}}{2 \, e^{\left (-\frac {1}{3} \, {\left (3 \, x - 8\right )} e^{2} - 81 \, x + 216\right )} \log \relax (x) + \log \relax (x)^{2} + e^{\left (-\frac {2}{3} \, {\left (3 \, x - 8\right )} e^{2} - 162 \, x + 432\right )}}\right )}}{3 \, e^{\left (-\frac {1}{3} \, {\left (3 \, x - 8\right )} e^{2} - 81 \, x + 216\right )} \log \relax (x)^{2} + \log \relax (x)^{3} + 3 \, e^{\left (-\frac {2}{3} \, {\left (3 \, x - 8\right )} e^{2} - 162 \, x + 432\right )} \log \relax (x) + e^{\left (-{\left (3 \, x - 8\right )} e^{2} - 243 \, x + 648\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 41, normalized size = 1.46
method | result | size |
risch | \({\mathrm e}^{\frac {x^{2}}{\ln \relax (x )^{2}+2 \,{\mathrm e}^{-\frac {\left (3 x -8\right ) \left (81+{\mathrm e}^{2}\right )}{3}} \ln \relax (x )+{\mathrm e}^{-\frac {2 \left (3 x -8\right ) \left (81+{\mathrm e}^{2}\right )}{3}}}}\) | \(41\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.16, size = 51, normalized size = 1.82 \begin {gather*} {\mathrm {e}}^{\frac {x^2}{{\ln \relax (x)}^2+2\,{\mathrm {e}}^{\frac {8\,{\mathrm {e}}^2}{3}}\,{\mathrm {e}}^{-81\,x}\,{\mathrm {e}}^{216}\,{\mathrm {e}}^{-x\,{\mathrm {e}}^2}\,\ln \relax (x)+{\mathrm {e}}^{\frac {16\,{\mathrm {e}}^2}{3}}\,{\mathrm {e}}^{-162\,x}\,{\mathrm {e}}^{432}\,{\mathrm {e}}^{-2\,x\,{\mathrm {e}}^2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 1.34, size = 46, normalized size = 1.64 \begin {gather*} e^{\frac {x^{2}}{e^{- 162 x + 2 \left (\frac {8}{3} - x\right ) e^{2} + 432} + 2 e^{- 81 x + \left (\frac {8}{3} - x\right ) e^{2} + 216} \log {\relax (x )} + \log {\relax (x )}^{2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________