Optimal. Leaf size=34 \[ 3-\frac {1}{25} e^{\frac {2 (5-5 x)}{x}+2 x^2} (5-x) x-\log (4) \]
________________________________________________________________________________________
Rubi [F] time = 0.55, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {2 (5-5 x)}{x}+2 x^2} \left (50-15 x+2 x^2-20 x^3+4 x^4\right )}{25 x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{25} \int \frac {e^{\frac {2 (5-5 x)}{x}+2 x^2} \left (50-15 x+2 x^2-20 x^3+4 x^4\right )}{x} \, dx\\ &=\frac {1}{25} \int \frac {e^{\frac {2 \left (5-5 x+x^3\right )}{x}} \left (50-15 x+2 x^2-20 x^3+4 x^4\right )}{x} \, dx\\ &=\frac {1}{25} \int \left (-15 e^{\frac {2 \left (5-5 x+x^3\right )}{x}}+\frac {50 e^{\frac {2 \left (5-5 x+x^3\right )}{x}}}{x}+2 e^{\frac {2 \left (5-5 x+x^3\right )}{x}} x-20 e^{\frac {2 \left (5-5 x+x^3\right )}{x}} x^2+4 e^{\frac {2 \left (5-5 x+x^3\right )}{x}} x^3\right ) \, dx\\ &=\frac {2}{25} \int e^{\frac {2 \left (5-5 x+x^3\right )}{x}} x \, dx+\frac {4}{25} \int e^{\frac {2 \left (5-5 x+x^3\right )}{x}} x^3 \, dx-\frac {3}{5} \int e^{\frac {2 \left (5-5 x+x^3\right )}{x}} \, dx-\frac {4}{5} \int e^{\frac {2 \left (5-5 x+x^3\right )}{x}} x^2 \, dx+2 \int \frac {e^{\frac {2 \left (5-5 x+x^3\right )}{x}}}{x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 23, normalized size = 0.68 \begin {gather*} \frac {1}{25} e^{\frac {2 \left (5-5 x+x^3\right )}{x}} (-5+x) x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 23, normalized size = 0.68 \begin {gather*} \frac {1}{25} \, {\left (x^{2} - 5 \, x\right )} e^{\left (\frac {2 \, {\left (x^{3} - 5 \, x + 5\right )}}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 37, normalized size = 1.09 \begin {gather*} \frac {1}{25} \, x^{2} e^{\left (\frac {2 \, {\left (x^{3} - 5 \, x + 5\right )}}{x}\right )} - \frac {1}{5} \, x e^{\left (\frac {2 \, {\left (x^{3} - 5 \, x + 5\right )}}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 21, normalized size = 0.62
method | result | size |
risch | \(\frac {\left (x -5\right ) x \,{\mathrm e}^{\frac {2 x^{3}-10 x +10}{x}}}{25}\) | \(21\) |
gosper | \(\frac {x \left (x -5\right ) {\mathrm e}^{-\frac {10 \left (x -1\right )}{x}} {\mathrm e}^{2 x^{2}}}{25}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.82, size = 22, normalized size = 0.65 \begin {gather*} \frac {1}{25} \, {\left (x^{2} - 5 \, x\right )} e^{\left (2 \, x^{2} + \frac {10}{x} - 10\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.70, size = 20, normalized size = 0.59 \begin {gather*} \frac {x\,{\mathrm {e}}^{-10}\,{\mathrm {e}}^{2\,x^2}\,{\mathrm {e}}^{10/x}\,\left (x-5\right )}{25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 24.56, size = 29, normalized size = 0.85 \begin {gather*} \frac {\left (x^{2} e^{2 x^{2}} - 5 x e^{2 x^{2}}\right ) e^{\frac {2 \left (5 - 5 x\right )}{x}}}{25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________