Optimal. Leaf size=31 \[ -\left (\left (-e^{\log ^2(x)}-x\right ) \left (-4^{25 x}+x\right ) \left (e^{\log ^2(x)}+x\right )\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.48, antiderivative size = 147, normalized size of antiderivative = 4.74, number of steps used = 13, number of rules used = 5, integrand size = 115, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.043, Rules used = {14, 2196, 2176, 2194, 2288} \begin {gather*} x^3-\frac {2^{50 x-1} x^2 \log (4)}{\log (2)}-\frac {2^{50 x-2} \log (4)}{625 \log ^3(2)}-\frac {x e^{\log ^2(x)} \left (2^{50 x+1} \log (x)-2 x \log (x)\right )}{\log (x)}+\frac {2^{50 x-1} x \log (4)}{25 \log ^2(2)}-\frac {e^{2 \log ^2(x)} \left (4^{25 x+1} \log (x)-4 x \log (x)\right )}{4 \log (x)}+\frac {2^{50 x-1}}{625 \log ^2(2)}-\frac {2^{50 x} x}{25 \log (2)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2176
Rule 2194
Rule 2196
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-x \left (2^{1+50 x}-3 x+25\ 2^{50 x} x \log (4)\right )-\frac {e^{2 \log ^2(x)} \left (-x+25\ 4^{25 x} x \log (4)+4^{1+25 x} \log (x)-4 x \log (x)\right )}{x}-2 e^{\log ^2(x)} \left (2^{50 x}-2 x+25\ 2^{50 x} x \log (4)+2^{1+50 x} \log (x)-2 x \log (x)\right )\right ) \, dx\\ &=-\left (2 \int e^{\log ^2(x)} \left (2^{50 x}-2 x+25\ 2^{50 x} x \log (4)+2^{1+50 x} \log (x)-2 x \log (x)\right ) \, dx\right )-\int x \left (2^{1+50 x}-3 x+25\ 2^{50 x} x \log (4)\right ) \, dx-\int \frac {e^{2 \log ^2(x)} \left (-x+25\ 4^{25 x} x \log (4)+4^{1+25 x} \log (x)-4 x \log (x)\right )}{x} \, dx\\ &=-\frac {e^{2 \log ^2(x)} \left (4^{1+25 x} \log (x)-4 x \log (x)\right )}{4 \log (x)}-\frac {e^{\log ^2(x)} x \left (2^{1+50 x} \log (x)-2 x \log (x)\right )}{\log (x)}-\int \left (-3 x^2+2^{50 x} x (2+25 x \log (4))\right ) \, dx\\ &=x^3-\frac {e^{2 \log ^2(x)} \left (4^{1+25 x} \log (x)-4 x \log (x)\right )}{4 \log (x)}-\frac {e^{\log ^2(x)} x \left (2^{1+50 x} \log (x)-2 x \log (x)\right )}{\log (x)}-\int 2^{50 x} x (2+25 x \log (4)) \, dx\\ &=x^3-\frac {e^{2 \log ^2(x)} \left (4^{1+25 x} \log (x)-4 x \log (x)\right )}{4 \log (x)}-\frac {e^{\log ^2(x)} x \left (2^{1+50 x} \log (x)-2 x \log (x)\right )}{\log (x)}-\int \left (2^{1+50 x} x+25\ 2^{50 x} x^2 \log (4)\right ) \, dx\\ &=x^3-\frac {e^{2 \log ^2(x)} \left (4^{1+25 x} \log (x)-4 x \log (x)\right )}{4 \log (x)}-\frac {e^{\log ^2(x)} x \left (2^{1+50 x} \log (x)-2 x \log (x)\right )}{\log (x)}-(25 \log (4)) \int 2^{50 x} x^2 \, dx-\int 2^{1+50 x} x \, dx\\ &=x^3-\frac {2^{50 x} x}{25 \log (2)}-\frac {2^{-1+50 x} x^2 \log (4)}{\log (2)}-\frac {e^{2 \log ^2(x)} \left (4^{1+25 x} \log (x)-4 x \log (x)\right )}{4 \log (x)}-\frac {e^{\log ^2(x)} x \left (2^{1+50 x} \log (x)-2 x \log (x)\right )}{\log (x)}+\frac {\int 2^{1+50 x} \, dx}{50 \log (2)}+\frac {\log (4) \int 2^{50 x} x \, dx}{\log (2)}\\ &=x^3+\frac {2^{-1+50 x}}{625 \log ^2(2)}-\frac {2^{50 x} x}{25 \log (2)}+\frac {2^{-1+50 x} x \log (4)}{25 \log ^2(2)}-\frac {2^{-1+50 x} x^2 \log (4)}{\log (2)}-\frac {e^{2 \log ^2(x)} \left (4^{1+25 x} \log (x)-4 x \log (x)\right )}{4 \log (x)}-\frac {e^{\log ^2(x)} x \left (2^{1+50 x} \log (x)-2 x \log (x)\right )}{\log (x)}-\frac {\log (4) \int 2^{50 x} \, dx}{50 \log ^2(2)}\\ &=x^3+\frac {2^{-1+50 x}}{625 \log ^2(2)}-\frac {2^{50 x} x}{25 \log (2)}-\frac {2^{-2+50 x} \log (4)}{625 \log ^3(2)}+\frac {2^{-1+50 x} x \log (4)}{25 \log ^2(2)}-\frac {2^{-1+50 x} x^2 \log (4)}{\log (2)}-\frac {e^{2 \log ^2(x)} \left (4^{1+25 x} \log (x)-4 x \log (x)\right )}{4 \log (x)}-\frac {e^{\log ^2(x)} x \left (2^{1+50 x} \log (x)-2 x \log (x)\right )}{\log (x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.34, size = 21, normalized size = 0.68 \begin {gather*} -\left (\left (2^{50 x}-x\right ) \left (e^{\log ^2(x)}+x\right )^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.90, size = 52, normalized size = 1.68 \begin {gather*} -2^{50 \, x} x^{2} + x^{3} - {\left (2^{50 \, x} - x\right )} e^{\left (2 \, \log \relax (x)^{2}\right )} - 2 \, {\left (2^{50 \, x} x - x^{2}\right )} e^{\left (\log \relax (x)^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.40, size = 62, normalized size = 2.00 \begin {gather*} -2^{50 \, x} x^{2} + x^{3} + 2 \, x^{2} e^{\left (\log \relax (x)^{2}\right )} - 2 \, x e^{\left (50 \, x \log \relax (2) + \log \relax (x)^{2}\right )} + x e^{\left (2 \, \log \relax (x)^{2}\right )} - e^{\left (50 \, x \log \relax (2) + 2 \, \log \relax (x)^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.17, size = 52, normalized size = 1.68
method | result | size |
risch | \(x^{3}-x^{2} {\mathrm e}^{50 x \ln \relax (2)}+\left (x -{\mathrm e}^{50 x \ln \relax (2)}\right ) {\mathrm e}^{2 \ln \relax (x )^{2}}+2 \left (x -{\mathrm e}^{50 x \ln \relax (2)}\right ) x \,{\mathrm e}^{\ln \relax (x )^{2}}\) | \(52\) |
default | \({\mathrm e}^{2 \ln \relax (x )^{2}} x -{\mathrm e}^{50 x \ln \relax (2)} {\mathrm e}^{2 \ln \relax (x )^{2}}+2 \,{\mathrm e}^{\ln \relax (x )^{2}} x^{2}-2 \,{\mathrm e}^{50 x \ln \relax (2)} {\mathrm e}^{\ln \relax (x )^{2}} x +x^{3}-x^{2} {\mathrm e}^{50 x \ln \relax (2)}\) | \(64\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} x^{3} - 2 i \, \sqrt {\pi } \operatorname {erf}\left (i \, \log \relax (x) + i\right ) e^{\left (-1\right )} - 2 \, x e^{\left (50 \, x \log \relax (2) + \log \relax (x)^{2}\right )} - {\left (2^{50 \, x} - x\right )} e^{\left (2 \, \log \relax (x)^{2}\right )} - \frac {{\left (1250 \, x^{2} \log \relax (2)^{2} - 50 \, x \log \relax (2) + 1\right )} 2^{50 \, x}}{1250 \, \log \relax (2)^{2}} - \frac {{\left (50 \, x \log \relax (2) - 1\right )} 2^{50 \, x}}{1250 \, \log \relax (2)^{2}} + 4 \, \int x e^{\left (\log \relax (x)^{2}\right )} \log \relax (x)\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.41, size = 48, normalized size = 1.55 \begin {gather*} {\mathrm {e}}^{2\,{\ln \relax (x)}^2}\,\left (x-2^{50\,x}\right )-2^{50\,x}\,x^2+x^3+2\,x\,{\mathrm {e}}^{{\ln \relax (x)}^2}\,\left (x-2^{50\,x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________