Optimal. Leaf size=20 \[ x \log \left (4-e^4+x^2+x \left (e^5+x\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.19, antiderivative size = 20, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 7, integrand size = 67, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.104, Rules used = {6688, 773, 634, 618, 206, 628, 2523} \begin {gather*} x \log \left (2 x^2+e^5 x-e^4+4\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 206
Rule 618
Rule 628
Rule 634
Rule 773
Rule 2523
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {x \left (e^5+4 x\right )}{4-e^4+e^5 x+2 x^2}+\log \left (4-e^4+e^5 x+2 x^2\right )\right ) \, dx\\ &=\int \frac {x \left (e^5+4 x\right )}{4-e^4+e^5 x+2 x^2} \, dx+\int \log \left (4-e^4+e^5 x+2 x^2\right ) \, dx\\ &=2 x+x \log \left (4-e^4+e^5 x+2 x^2\right )+\frac {1}{2} \int \frac {-4 \left (4-e^4\right )-2 e^5 x}{4-e^4+e^5 x+2 x^2} \, dx-\int \frac {x \left (e^5+4 x\right )}{4-e^4+e^5 x+2 x^2} \, dx\\ &=x \log \left (4-e^4+e^5 x+2 x^2\right )-\frac {1}{2} \int \frac {-4 \left (4-e^4\right )-2 e^5 x}{4-e^4+e^5 x+2 x^2} \, dx-\frac {1}{4} e^5 \int \frac {e^5+4 x}{4-e^4+e^5 x+2 x^2} \, dx+\frac {1}{4} \left (-32+8 e^4+e^{10}\right ) \int \frac {1}{4-e^4+e^5 x+2 x^2} \, dx\\ &=-\frac {1}{4} e^5 \log \left (4-e^4+e^5 x+2 x^2\right )+x \log \left (4-e^4+e^5 x+2 x^2\right )+\frac {1}{4} e^5 \int \frac {e^5+4 x}{4-e^4+e^5 x+2 x^2} \, dx+\frac {1}{2} \left (32-8 e^4-e^{10}\right ) \operatorname {Subst}\left (\int \frac {1}{-32+8 e^4+e^{10}-x^2} \, dx,x,e^5+4 x\right )-\frac {1}{4} \left (-32+8 e^4+e^{10}\right ) \int \frac {1}{4-e^4+e^5 x+2 x^2} \, dx\\ &=-\frac {1}{2} \sqrt {-32+8 e^4+e^{10}} \tanh ^{-1}\left (\frac {e^5+4 x}{\sqrt {-32+8 e^4+e^{10}}}\right )+x \log \left (4-e^4+e^5 x+2 x^2\right )-\frac {1}{2} \left (32-8 e^4-e^{10}\right ) \operatorname {Subst}\left (\int \frac {1}{-32+8 e^4+e^{10}-x^2} \, dx,x,e^5+4 x\right )\\ &=x \log \left (4-e^4+e^5 x+2 x^2\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 20, normalized size = 1.00 \begin {gather*} x \log \left (4-e^4+e^5 x+2 x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.91, size = 18, normalized size = 0.90 \begin {gather*} x \log \left (2 \, x^{2} + x e^{5} - e^{4} + 4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.32, size = 18, normalized size = 0.90 \begin {gather*} x \log \left (2 \, x^{2} + x e^{5} - e^{4} + 4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.61, size = 19, normalized size = 0.95
method | result | size |
default | \(x \ln \left (x \,{\mathrm e}^{5}-{\mathrm e}^{4}+2 x^{2}+4\right )\) | \(19\) |
norman | \(x \ln \left (x \,{\mathrm e}^{5}-{\mathrm e}^{4}+2 x^{2}+4\right )\) | \(19\) |
risch | \(x \ln \left (x \,{\mathrm e}^{5}-{\mathrm e}^{4}+2 x^{2}+4\right )\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.84, size = 227, normalized size = 11.35 \begin {gather*} -\frac {1}{4} \, {\left (\frac {e^{5} \log \left (\frac {4 \, x - \sqrt {e^{10} + 8 \, e^{4} - 32} + e^{5}}{4 \, x + \sqrt {e^{10} + 8 \, e^{4} - 32} + e^{5}}\right )}{\sqrt {e^{10} + 8 \, e^{4} - 32}} - \log \left (2 \, x^{2} + x e^{5} - e^{4} + 4\right )\right )} e^{5} + \frac {1}{4} \, {\left (4 \, x + e^{5}\right )} \log \left (2 \, x^{2} + x e^{5} - e^{4} + 4\right ) - \frac {1}{2} \, e^{5} \log \left (2 \, x^{2} + x e^{5} - e^{4} + 4\right ) - \frac {1}{4} \, \sqrt {e^{10} + 8 \, e^{4} - 32} \log \left (\frac {4 \, x - \sqrt {e^{10} + 8 \, e^{4} - 32} + e^{5}}{4 \, x + \sqrt {e^{10} + 8 \, e^{4} - 32} + e^{5}}\right ) + \frac {{\left (e^{10} + 4 \, e^{4} - 16\right )} \log \left (\frac {4 \, x - \sqrt {e^{10} + 8 \, e^{4} - 32} + e^{5}}{4 \, x + \sqrt {e^{10} + 8 \, e^{4} - 32} + e^{5}}\right )}{2 \, \sqrt {e^{10} + 8 \, e^{4} - 32}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.88, size = 18, normalized size = 0.90 \begin {gather*} x\,\ln \left (2\,x^2+{\mathrm {e}}^5\,x-{\mathrm {e}}^4+4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 17, normalized size = 0.85 \begin {gather*} x \log {\left (2 x^{2} + x e^{5} - e^{4} + 4 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________