Optimal. Leaf size=30 \[ \log \left (-e^{x+\frac {e^{4-x} x}{\log (x)}}+\left (2-e^{10}\right )^2\right ) \]
________________________________________________________________________________________
Rubi [F] time = 6.39, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {e^{4-x} x+x \log (x)}{\log (x)}} \left (-e^{4-x}+e^{4-x} (1-x) \log (x)+\log ^2(x)\right )}{e^{\frac {e^{4-x} x+x \log (x)}{\log (x)}} \log ^2(x)+\left (-4+4 e^{10}-e^{20}\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\frac {e^{4-x} x+x \log (x)}{\log (x)}} \left (-e^{4-x}+e^{4-x} (1-x) \log (x)+\log ^2(x)\right )}{\left (e^{x+\frac {e^{4-x} x}{\log (x)}}-4 \left (1+\frac {1}{4} e^{10} \left (-4+e^{10}\right )\right )\right ) \log ^2(x)} \, dx\\ &=\int \left (\frac {e^{\frac {e^{4-x} x+x \log (x)}{\log (x)}}}{e^{x+\frac {e^{4-x} x}{\log (x)}}-4 \left (1+\frac {1}{4} e^{10} \left (-4+e^{10}\right )\right )}+\frac {e^{4-x+\frac {e^{4-x} x+x \log (x)}{\log (x)}}}{\left (-e^{x+\frac {e^{4-x} x}{\log (x)}}+4 \left (1+\frac {1}{4} e^{10} \left (-4+e^{10}\right )\right )\right ) \log ^2(x)}+\frac {e^{4-x+\frac {e^{4-x} x+x \log (x)}{\log (x)}}}{\left (e^{x+\frac {e^{4-x} x}{\log (x)}}-4 \left (1+\frac {1}{4} e^{10} \left (-4+e^{10}\right )\right )\right ) \log (x)}+\frac {e^{4-x+\frac {e^{4-x} x+x \log (x)}{\log (x)}} x}{\left (-e^{x+\frac {e^{4-x} x}{\log (x)}}+4 \left (1+\frac {1}{4} e^{10} \left (-4+e^{10}\right )\right )\right ) \log (x)}\right ) \, dx\\ &=\int \frac {e^{\frac {e^{4-x} x+x \log (x)}{\log (x)}}}{e^{x+\frac {e^{4-x} x}{\log (x)}}-4 \left (1+\frac {1}{4} e^{10} \left (-4+e^{10}\right )\right )} \, dx+\int \frac {e^{4-x+\frac {e^{4-x} x+x \log (x)}{\log (x)}}}{\left (-e^{x+\frac {e^{4-x} x}{\log (x)}}+4 \left (1+\frac {1}{4} e^{10} \left (-4+e^{10}\right )\right )\right ) \log ^2(x)} \, dx+\int \frac {e^{4-x+\frac {e^{4-x} x+x \log (x)}{\log (x)}}}{\left (e^{x+\frac {e^{4-x} x}{\log (x)}}-4 \left (1+\frac {1}{4} e^{10} \left (-4+e^{10}\right )\right )\right ) \log (x)} \, dx+\int \frac {e^{4-x+\frac {e^{4-x} x+x \log (x)}{\log (x)}} x}{\left (-e^{x+\frac {e^{4-x} x}{\log (x)}}+4 \left (1+\frac {1}{4} e^{10} \left (-4+e^{10}\right )\right )\right ) \log (x)} \, dx\\ &=\int \left (1-\frac {\left (-2+e^{10}\right )^2}{4-4 e^{10}+e^{20}-e^{x+\frac {e^{4-x} x}{\log (x)}}}\right ) \, dx+\int \frac {e^{4+\frac {e^{4-x} x}{\log (x)}}}{\left (-e^{x+\frac {e^{4-x} x}{\log (x)}}+4 \left (1+\frac {1}{4} e^{10} \left (-4+e^{10}\right )\right )\right ) \log ^2(x)} \, dx+\int \frac {e^{4+\frac {e^{4-x} x}{\log (x)}}}{\left (e^{x+\frac {e^{4-x} x}{\log (x)}}-4 \left (1+\frac {1}{4} e^{10} \left (-4+e^{10}\right )\right )\right ) \log (x)} \, dx+\int \frac {e^{4+\frac {e^{4-x} x}{\log (x)}} x}{\left (-e^{x+\frac {e^{4-x} x}{\log (x)}}+4 \left (1+\frac {1}{4} e^{10} \left (-4+e^{10}\right )\right )\right ) \log (x)} \, dx\\ &=x-\left (-2+e^{10}\right )^2 \int \frac {1}{4-4 e^{10}+e^{20}-e^{x+\frac {e^{4-x} x}{\log (x)}}} \, dx+\int \frac {e^{4+\frac {e^{4-x} x}{\log (x)}}}{\left (-e^{x+\frac {e^{4-x} x}{\log (x)}}+4 \left (1+\frac {1}{4} e^{10} \left (-4+e^{10}\right )\right )\right ) \log ^2(x)} \, dx+\int \frac {e^{4+\frac {e^{4-x} x}{\log (x)}}}{\left (e^{x+\frac {e^{4-x} x}{\log (x)}}-4 \left (1+\frac {1}{4} e^{10} \left (-4+e^{10}\right )\right )\right ) \log (x)} \, dx+\int \frac {e^{4+\frac {e^{4-x} x}{\log (x)}} x}{\left (-e^{x+\frac {e^{4-x} x}{\log (x)}}+4 \left (1+\frac {1}{4} e^{10} \left (-4+e^{10}\right )\right )\right ) \log (x)} \, dx\\ &=x-\left (-2+e^{10}\right )^2 \int \frac {1}{-e^{x+\frac {e^{4-x} x}{\log (x)}}+4 \left (1+\frac {1}{4} e^{10} \left (-4+e^{10}\right )\right )} \, dx+\int \frac {e^{4+\frac {e^{4-x} x}{\log (x)}}}{\left (-e^{x+\frac {e^{4-x} x}{\log (x)}}+4 \left (1+\frac {1}{4} e^{10} \left (-4+e^{10}\right )\right )\right ) \log ^2(x)} \, dx+\int \frac {e^{4+\frac {e^{4-x} x}{\log (x)}}}{\left (e^{x+\frac {e^{4-x} x}{\log (x)}}-4 \left (1+\frac {1}{4} e^{10} \left (-4+e^{10}\right )\right )\right ) \log (x)} \, dx+\int \frac {e^{4+\frac {e^{4-x} x}{\log (x)}} x}{\left (-e^{x+\frac {e^{4-x} x}{\log (x)}}+4 \left (1+\frac {1}{4} e^{10} \left (-4+e^{10}\right )\right )\right ) \log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.92, size = 30, normalized size = 1.00 \begin {gather*} \log \left (-4+4 e^{10}-e^{20}+e^{x+\frac {e^{4-x} x}{\log (x)}}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.75, size = 30, normalized size = 1.00 \begin {gather*} \log \left (-e^{20} + 4 \, e^{10} + e^{\left (\frac {x e^{\left (-x + 4\right )} + x \log \relax (x)}{\log \relax (x)}\right )} - 4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left ({\left (x - 1\right )} e^{\left (-x + 4\right )} \log \relax (x) - \log \relax (x)^{2} + e^{\left (-x + 4\right )}\right )} e^{\left (\frac {x e^{\left (-x + 4\right )} + x \log \relax (x)}{\log \relax (x)}\right )}}{{\left (e^{20} - 4 \, e^{10} + 4\right )} \log \relax (x)^{2} - e^{\left (\frac {x e^{\left (-x + 4\right )} + x \log \relax (x)}{\log \relax (x)}\right )} \log \relax (x)^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.05, size = 61, normalized size = 2.03
method | result | size |
risch | \(x +\frac {x \,{\mathrm e}^{-x +4}}{\ln \relax (x )}-\frac {x \ln \relax (x )+x \,{\mathrm e}^{-x +4}}{\ln \relax (x )}+\ln \left ({\mathrm e}^{\frac {x \left (\ln \relax (x )+{\mathrm e}^{-x +4}\right )}{\ln \relax (x )}}-{\mathrm e}^{20}+4 \,{\mathrm e}^{10}-4\right )\) | \(61\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.64, size = 34, normalized size = 1.13 \begin {gather*} x + \log \left (-{\left (e^{20} - 4 \, e^{10} - e^{\left (x + \frac {x e^{\left (-x + 4\right )}}{\log \relax (x)}\right )} + 4\right )} e^{\left (-x\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {{\mathrm {e}}^{\frac {x\,{\mathrm {e}}^{4-x}+x\,\ln \relax (x)}{\ln \relax (x)}}\,\left (-{\ln \relax (x)}^2+{\mathrm {e}}^{4-x}\,\left (x-1\right )\,\ln \relax (x)+{\mathrm {e}}^{4-x}\right )}{{\ln \relax (x)}^2\,\left ({\mathrm {e}}^{20}-4\,{\mathrm {e}}^{10}+4\right )-{\mathrm {e}}^{\frac {x\,{\mathrm {e}}^{4-x}+x\,\ln \relax (x)}{\ln \relax (x)}}\,{\ln \relax (x)}^2} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.68, size = 27, normalized size = 0.90 \begin {gather*} \log {\left (e^{\frac {x e^{4 - x} + x \log {\relax (x )}}{\log {\relax (x )}}} - e^{20} - 4 + 4 e^{10} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________