Optimal. Leaf size=26 \[ \left (25-e^{\frac {e^{1+x}}{2+e^x}+x}-2 x\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 11.32, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-400+e^{\frac {2 \left (e^{1+x}+2 x+e^x x\right )}{2+e^x}} \left (8+8 e^x+2 e^{2 x}+4 e^{1+x}\right )+32 x+e^{2 x} (-100+8 x)+e^x (-400+32 x)+e^{\frac {e^{1+x}+2 x+e^x x}{2+e^x}} \left (-184+16 x+e^{2 x} (-46+4 x)+e^{1+x} (-100+8 x)+e^x (-184+16 x)\right )}{4+4 e^x+e^{2 x}} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-400+e^{\frac {2 \left (e^{1+x}+2 x+e^x x\right )}{2+e^x}} \left (8+8 e^x+2 e^{2 x}+4 e^{1+x}\right )+32 x+e^{2 x} (-100+8 x)+e^x (-400+32 x)+e^{\frac {e^{1+x}+2 x+e^x x}{2+e^x}} \left (-184+16 x+e^{2 x} (-46+4 x)+e^{1+x} (-100+8 x)+e^x (-184+16 x)\right )}{\left (2+e^x\right )^2} \, dx\\ &=\int \left (-\frac {400}{\left (2+e^x\right )^2}+\frac {2 e^{\frac {2 \left (e^{1+x}+2 x+e^x x\right )}{2+e^x}} \left (4+4 \left (1+\frac {e}{2}\right ) e^x+e^{2 x}\right )}{\left (2+e^x\right )^2}+\frac {32 x}{\left (2+e^x\right )^2}+\frac {16 e^x (-25+2 x)}{\left (2+e^x\right )^2}+\frac {4 e^{2 x} (-25+2 x)}{\left (2+e^x\right )^2}+\frac {2 e^{\frac {e^{1+x}+2 x+e^x x}{2+e^x}} \left (-92-92 \left (1+\frac {25 e}{46}\right ) e^x-23 e^{2 x}+8 x+8 \left (1+\frac {e}{2}\right ) e^x x+2 e^{2 x} x\right )}{\left (2+e^x\right )^2}\right ) \, dx\\ &=2 \int \frac {e^{\frac {2 \left (e^{1+x}+2 x+e^x x\right )}{2+e^x}} \left (4+4 \left (1+\frac {e}{2}\right ) e^x+e^{2 x}\right )}{\left (2+e^x\right )^2} \, dx+2 \int \frac {e^{\frac {e^{1+x}+2 x+e^x x}{2+e^x}} \left (-92-92 \left (1+\frac {25 e}{46}\right ) e^x-23 e^{2 x}+8 x+8 \left (1+\frac {e}{2}\right ) e^x x+2 e^{2 x} x\right )}{\left (2+e^x\right )^2} \, dx+4 \int \frac {e^{2 x} (-25+2 x)}{\left (2+e^x\right )^2} \, dx+16 \int \frac {e^x (-25+2 x)}{\left (2+e^x\right )^2} \, dx+32 \int \frac {x}{\left (2+e^x\right )^2} \, dx-400 \int \frac {1}{\left (2+e^x\right )^2} \, dx\\ &=\frac {16 (25-2 x)}{2+e^x}+2 \int \left (e^{\frac {2 \left (e^{1+x}+2 x+e^x x\right )}{2+e^x}}-\frac {4 e^{1+\frac {2 \left (e^{1+x}+2 x+e^x x\right )}{2+e^x}}}{\left (2+e^x\right )^2}+\frac {2 e^{1+\frac {2 \left (e^{1+x}+2 x+e^x x\right )}{2+e^x}}}{2+e^x}\right ) \, dx+2 \int \left (-23 e^{\frac {e^{1+x}+2 x+e^x x}{2+e^x}}+2 e^{\frac {e^{1+x}+2 x+e^x x}{2+e^x}} x-\frac {4 e^{1+\frac {e^{1+x}+2 x+e^x x}{2+e^x}} (-25+2 x)}{\left (2+e^x\right )^2}+\frac {2 e^{1+\frac {e^{1+x}+2 x+e^x x}{2+e^x}} (-25+2 x)}{2+e^x}\right ) \, dx+4 \int \left (-25+2 x+\frac {4 (-25+2 x)}{\left (2+e^x\right )^2}-\frac {4 (-25+2 x)}{2+e^x}\right ) \, dx-16 \int \frac {e^x x}{\left (2+e^x\right )^2} \, dx+16 \int \frac {x}{2+e^x} \, dx+32 \int \frac {1}{2+e^x} \, dx-400 \operatorname {Subst}\left (\int \frac {1}{x (2+x)^2} \, dx,x,e^x\right )\\ &=\frac {16 (25-2 x)}{2+e^x}-100 x+\frac {16 x}{2+e^x}+8 x^2+2 \int e^{\frac {2 \left (e^{1+x}+2 x+e^x x\right )}{2+e^x}} \, dx+4 \int \frac {e^{1+\frac {2 \left (e^{1+x}+2 x+e^x x\right )}{2+e^x}}}{2+e^x} \, dx+4 \int e^{\frac {e^{1+x}+2 x+e^x x}{2+e^x}} x \, dx+4 \int \frac {e^{1+\frac {e^{1+x}+2 x+e^x x}{2+e^x}} (-25+2 x)}{2+e^x} \, dx-8 \int \frac {e^{1+\frac {2 \left (e^{1+x}+2 x+e^x x\right )}{2+e^x}}}{\left (2+e^x\right )^2} \, dx-8 \int \frac {e^x x}{2+e^x} \, dx-8 \int \frac {e^{1+\frac {e^{1+x}+2 x+e^x x}{2+e^x}} (-25+2 x)}{\left (2+e^x\right )^2} \, dx-16 \int \frac {1}{2+e^x} \, dx+16 \int \frac {-25+2 x}{\left (2+e^x\right )^2} \, dx-16 \int \frac {-25+2 x}{2+e^x} \, dx+32 \operatorname {Subst}\left (\int \frac {1}{x (2+x)} \, dx,x,e^x\right )-46 \int e^{\frac {e^{1+x}+2 x+e^x x}{2+e^x}} \, dx-400 \operatorname {Subst}\left (\int \left (\frac {1}{4 x}-\frac {1}{2 (2+x)^2}-\frac {1}{4 (2+x)}\right ) \, dx,x,e^x\right )\\ &=-\frac {200}{2+e^x}+\frac {16 (25-2 x)}{2+e^x}-2 (25-2 x)^2-200 x+\frac {16 x}{2+e^x}+8 x^2-8 x \log \left (1+\frac {e^x}{2}\right )+100 \log \left (2+e^x\right )+2 \int e^{\frac {2 \left (e^{1+x}+2 x+e^x x\right )}{2+e^x}} \, dx+4 \int \frac {e^{1+\frac {2 \left (e^{1+x}+2 x+e^x x\right )}{2+e^x}}}{2+e^x} \, dx+4 \int e^{\frac {e^{1+x}+2 x+e^x x}{2+e^x}} x \, dx+4 \int \frac {e^{\frac {2+e^x (1+e)+2 x+e^x x}{2+e^x}} (-25+2 x)}{2+e^x} \, dx-8 \int \frac {e^{1+\frac {2 \left (e^{1+x}+2 x+e^x x\right )}{2+e^x}}}{\left (2+e^x\right )^2} \, dx-8 \int \frac {e^x (-25+2 x)}{\left (2+e^x\right )^2} \, dx-8 \int \frac {e^{\frac {2+e^x (1+e)+2 x+e^x x}{2+e^x}} (-25+2 x)}{\left (2+e^x\right )^2} \, dx+8 \int \frac {-25+2 x}{2+e^x} \, dx+8 \int \frac {e^x (-25+2 x)}{2+e^x} \, dx+8 \int \log \left (1+\frac {e^x}{2}\right ) \, dx+16 \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,e^x\right )-16 \operatorname {Subst}\left (\int \frac {1}{2+x} \, dx,x,e^x\right )-16 \operatorname {Subst}\left (\int \frac {1}{x (2+x)} \, dx,x,e^x\right )-46 \int e^{\frac {e^{1+x}+2 x+e^x x}{2+e^x}} \, dx\\ &=-\frac {200}{2+e^x}+\frac {8 (25-2 x)}{2+e^x}-(25-2 x)^2-184 x+\frac {16 x}{2+e^x}+8 x^2-8 (25-2 x) \log \left (1+\frac {e^x}{2}\right )-8 x \log \left (1+\frac {e^x}{2}\right )+84 \log \left (2+e^x\right )+2 \int e^{\frac {2 \left (e^{1+x}+2 x+e^x x\right )}{2+e^x}} \, dx+4 \int \frac {e^{1+\frac {2 \left (e^{1+x}+2 x+e^x x\right )}{2+e^x}}}{2+e^x} \, dx+4 \int e^{\frac {e^{1+x}+2 x+e^x x}{2+e^x}} x \, dx-4 \int \frac {e^x (-25+2 x)}{2+e^x} \, dx+4 \int \left (-\frac {25 e^{\frac {2+e^x (1+e)+2 x+e^x x}{2+e^x}}}{2+e^x}+\frac {2 e^{\frac {2+e^x (1+e)+2 x+e^x x}{2+e^x}} x}{2+e^x}\right ) \, dx-8 \int \frac {e^{1+\frac {2 \left (e^{1+x}+2 x+e^x x\right )}{2+e^x}}}{\left (2+e^x\right )^2} \, dx-8 \int \left (-\frac {25 e^{\frac {2+e^x (1+e)+2 x+e^x x}{2+e^x}}}{\left (2+e^x\right )^2}+\frac {2 e^{\frac {2+e^x (1+e)+2 x+e^x x}{2+e^x}} x}{\left (2+e^x\right )^2}\right ) \, dx-8 \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,e^x\right )+8 \operatorname {Subst}\left (\int \frac {1}{2+x} \, dx,x,e^x\right )+8 \operatorname {Subst}\left (\int \frac {\log \left (1+\frac {x}{2}\right )}{x} \, dx,x,e^x\right )-16 \int \frac {1}{2+e^x} \, dx-16 \int \log \left (1+\frac {e^x}{2}\right ) \, dx-46 \int e^{\frac {e^{1+x}+2 x+e^x x}{2+e^x}} \, dx\\ &=-\frac {200}{2+e^x}+\frac {8 (25-2 x)}{2+e^x}-(25-2 x)^2-192 x+\frac {16 x}{2+e^x}+8 x^2-4 (25-2 x) \log \left (1+\frac {e^x}{2}\right )-8 x \log \left (1+\frac {e^x}{2}\right )+92 \log \left (2+e^x\right )-8 \text {Li}_2\left (-\frac {e^x}{2}\right )+2 \int e^{\frac {2 \left (e^{1+x}+2 x+e^x x\right )}{2+e^x}} \, dx+4 \int \frac {e^{1+\frac {2 \left (e^{1+x}+2 x+e^x x\right )}{2+e^x}}}{2+e^x} \, dx+4 \int e^{\frac {e^{1+x}+2 x+e^x x}{2+e^x}} x \, dx-8 \int \frac {e^{1+\frac {2 \left (e^{1+x}+2 x+e^x x\right )}{2+e^x}}}{\left (2+e^x\right )^2} \, dx+8 \int \frac {e^{\frac {2+e^x (1+e)+2 x+e^x x}{2+e^x}} x}{2+e^x} \, dx+8 \int \log \left (1+\frac {e^x}{2}\right ) \, dx-16 \int \frac {e^{\frac {2+e^x (1+e)+2 x+e^x x}{2+e^x}} x}{\left (2+e^x\right )^2} \, dx-16 \operatorname {Subst}\left (\int \frac {1}{x (2+x)} \, dx,x,e^x\right )-16 \operatorname {Subst}\left (\int \frac {\log \left (1+\frac {x}{2}\right )}{x} \, dx,x,e^x\right )-46 \int e^{\frac {e^{1+x}+2 x+e^x x}{2+e^x}} \, dx-100 \int \frac {e^{\frac {2+e^x (1+e)+2 x+e^x x}{2+e^x}}}{2+e^x} \, dx+200 \int \frac {e^{\frac {2+e^x (1+e)+2 x+e^x x}{2+e^x}}}{\left (2+e^x\right )^2} \, dx\\ &=-\frac {200}{2+e^x}+\frac {8 (25-2 x)}{2+e^x}-(25-2 x)^2-192 x+\frac {16 x}{2+e^x}+8 x^2-4 (25-2 x) \log \left (1+\frac {e^x}{2}\right )-8 x \log \left (1+\frac {e^x}{2}\right )+92 \log \left (2+e^x\right )+8 \text {Li}_2\left (-\frac {e^x}{2}\right )+2 \int e^{\frac {2 \left (e^{1+x}+2 x+e^x x\right )}{2+e^x}} \, dx+4 \int \frac {e^{1+\frac {2 \left (e^{1+x}+2 x+e^x x\right )}{2+e^x}}}{2+e^x} \, dx+4 \int e^{\frac {e^{1+x}+2 x+e^x x}{2+e^x}} x \, dx-8 \int \frac {e^{1+\frac {2 \left (e^{1+x}+2 x+e^x x\right )}{2+e^x}}}{\left (2+e^x\right )^2} \, dx+8 \int \frac {e^{\frac {2+e^x (1+e)+2 x+e^x x}{2+e^x}} x}{2+e^x} \, dx-8 \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,e^x\right )+8 \operatorname {Subst}\left (\int \frac {1}{2+x} \, dx,x,e^x\right )+8 \operatorname {Subst}\left (\int \frac {\log \left (1+\frac {x}{2}\right )}{x} \, dx,x,e^x\right )-16 \int \frac {e^{\frac {2+e^x (1+e)+2 x+e^x x}{2+e^x}} x}{\left (2+e^x\right )^2} \, dx-46 \int e^{\frac {e^{1+x}+2 x+e^x x}{2+e^x}} \, dx-100 \int \frac {e^{\frac {2+e^x (1+e)+2 x+e^x x}{2+e^x}}}{2+e^x} \, dx+200 \int \frac {e^{\frac {2+e^x (1+e)+2 x+e^x x}{2+e^x}}}{\left (2+e^x\right )^2} \, dx\\ &=-\frac {200}{2+e^x}+\frac {8 (25-2 x)}{2+e^x}-(25-2 x)^2-200 x+\frac {16 x}{2+e^x}+8 x^2-4 (25-2 x) \log \left (1+\frac {e^x}{2}\right )-8 x \log \left (1+\frac {e^x}{2}\right )+100 \log \left (2+e^x\right )+2 \int e^{\frac {2 \left (e^{1+x}+2 x+e^x x\right )}{2+e^x}} \, dx+4 \int \frac {e^{1+\frac {2 \left (e^{1+x}+2 x+e^x x\right )}{2+e^x}}}{2+e^x} \, dx+4 \int e^{\frac {e^{1+x}+2 x+e^x x}{2+e^x}} x \, dx-8 \int \frac {e^{1+\frac {2 \left (e^{1+x}+2 x+e^x x\right )}{2+e^x}}}{\left (2+e^x\right )^2} \, dx+8 \int \frac {e^{\frac {2+e^x (1+e)+2 x+e^x x}{2+e^x}} x}{2+e^x} \, dx-16 \int \frac {e^{\frac {2+e^x (1+e)+2 x+e^x x}{2+e^x}} x}{\left (2+e^x\right )^2} \, dx-46 \int e^{\frac {e^{1+x}+2 x+e^x x}{2+e^x}} \, dx-100 \int \frac {e^{\frac {2+e^x (1+e)+2 x+e^x x}{2+e^x}}}{2+e^x} \, dx+200 \int \frac {e^{\frac {2+e^x (1+e)+2 x+e^x x}{2+e^x}}}{\left (2+e^x\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.63, size = 51, normalized size = 1.96 \begin {gather*} 2 \left (\frac {1}{2} e^{2 \left (e-\frac {2 e}{2+e^x}+x\right )}+2 (-25+x) x+e^{e-\frac {2 e}{2+e^x}+x} (-25+2 x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.72, size = 73, normalized size = 2.81 \begin {gather*} 4 \, x^{2} + 2 \, {\left (2 \, x - 25\right )} e^{\left (\frac {2 \, x e + {\left (x + e\right )} e^{\left (x + 1\right )}}{2 \, e + e^{\left (x + 1\right )}}\right )} - 100 \, x + e^{\left (\frac {2 \, {\left (2 \, x e + {\left (x + e\right )} e^{\left (x + 1\right )}\right )}}{2 \, e + e^{\left (x + 1\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {2 \, {\left (2 \, {\left (2 \, x - 25\right )} e^{\left (2 \, x\right )} + 8 \, {\left (2 \, x - 25\right )} e^{x} + {\left (e^{\left (2 \, x\right )} + 2 \, e^{\left (x + 1\right )} + 4 \, e^{x} + 4\right )} e^{\left (\frac {2 \, {\left (x e^{x} + 2 \, x + e^{\left (x + 1\right )}\right )}}{e^{x} + 2}\right )} + {\left ({\left (2 \, x - 23\right )} e^{\left (2 \, x\right )} + 2 \, {\left (2 \, x - 25\right )} e^{\left (x + 1\right )} + 4 \, {\left (2 \, x - 23\right )} e^{x} + 8 \, x - 92\right )} e^{\left (\frac {x e^{x} + 2 \, x + e^{\left (x + 1\right )}}{e^{x} + 2}\right )} + 16 \, x - 200\right )}}{e^{\left (2 \, x\right )} + 4 \, e^{x} + 4}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.35, size = 57, normalized size = 2.19
method | result | size |
risch | \(4 x^{2}+{\mathrm e}^{\frac {2 \,{\mathrm e}^{x +1}+2 \,{\mathrm e}^{x} x +4 x}{{\mathrm e}^{x}+2}}-100 x +\left (-50+4 x \right ) {\mathrm e}^{\frac {{\mathrm e}^{x +1}+{\mathrm e}^{x} x +2 x}{{\mathrm e}^{x}+2}}\) | \(57\) |
norman | \(\frac {{\mathrm e}^{x} {\mathrm e}^{\frac {2 \,{\mathrm e}^{x +1}+2 \,{\mathrm e}^{x} x +4 x}{{\mathrm e}^{x}+2}}-200 x +8 x^{2}+2 \,{\mathrm e}^{\frac {2 \,{\mathrm e}^{x +1}+2 \,{\mathrm e}^{x} x +4 x}{{\mathrm e}^{x}+2}}+8 x \,{\mathrm e}^{\frac {{\mathrm e} \,{\mathrm e}^{x}+{\mathrm e}^{x} x +2 x}{{\mathrm e}^{x}+2}}-100 \,{\mathrm e}^{x} x +4 \,{\mathrm e}^{x} x^{2}-50 \,{\mathrm e}^{x} {\mathrm e}^{\frac {{\mathrm e} \,{\mathrm e}^{x}+{\mathrm e}^{x} x +2 x}{{\mathrm e}^{x}+2}}+4 \,{\mathrm e}^{x} x \,{\mathrm e}^{\frac {{\mathrm e} \,{\mathrm e}^{x}+{\mathrm e}^{x} x +2 x}{{\mathrm e}^{x}+2}}-100 \,{\mathrm e}^{\frac {{\mathrm e} \,{\mathrm e}^{x}+{\mathrm e}^{x} x +2 x}{{\mathrm e}^{x}+2}}}{{\mathrm e}^{x}+2}\) | \(178\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.70, size = 119, normalized size = 4.58 \begin {gather*} -100 \, x + \frac {4 \, x^{2} e^{x} + 8 \, x^{2} + {\left (e^{x} + 2\right )} e^{\left (\frac {2 \, x e^{x}}{e^{x} + 2} + \frac {4 \, x}{e^{x} + 2} + \frac {2 \, e^{\left (x + 1\right )}}{e^{x} + 2}\right )} + 2 \, {\left ({\left (2 \, x - 25\right )} e^{x} + 4 \, x - 50\right )} e^{\left (\frac {x e^{x}}{e^{x} + 2} + \frac {2 \, x}{e^{x} + 2} + \frac {e^{\left (x + 1\right )}}{e^{x} + 2}\right )} + 200}{e^{x} + 2} - \frac {200}{e^{x} + 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {32\,x+{\mathrm {e}}^{\frac {2\,x+{\mathrm {e}}^{x+1}+x\,{\mathrm {e}}^x}{{\mathrm {e}}^x+2}}\,\left (16\,x+{\mathrm {e}}^x\,\left (16\,x-184\right )+{\mathrm {e}}^{2\,x}\,\left (4\,x-46\right )+{\mathrm {e}}^{x+1}\,\left (8\,x-100\right )-184\right )+{\mathrm {e}}^x\,\left (32\,x-400\right )+{\mathrm {e}}^{\frac {2\,\left (2\,x+{\mathrm {e}}^{x+1}+x\,{\mathrm {e}}^x\right )}{{\mathrm {e}}^x+2}}\,\left (2\,{\mathrm {e}}^{2\,x}+4\,{\mathrm {e}}^{x+1}+8\,{\mathrm {e}}^x+8\right )+{\mathrm {e}}^{2\,x}\,\left (8\,x-100\right )-400}{{\mathrm {e}}^{2\,x}+4\,{\mathrm {e}}^x+4} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.45, size = 60, normalized size = 2.31 \begin {gather*} 4 x^{2} - 100 x + \left (4 x - 50\right ) e^{\frac {x e^{x} + 2 x + e e^{x}}{e^{x} + 2}} + e^{\frac {2 \left (x e^{x} + 2 x + e e^{x}\right )}{e^{x} + 2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________