Optimal. Leaf size=26 \[ \log \left (\frac {7 \left (4-x^2\right ) \log (4) (-x+\log (4 \log (x)))}{3 x}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 1.13, antiderivative size = 23, normalized size of antiderivative = 0.88, number of steps used = 7, number of rules used = 5, integrand size = 58, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.086, Rules used = {6741, 6725, 446, 72, 6684} \begin {gather*} \log \left (4-x^2\right )-\log (x)+\log (x-\log (4 \log (x))) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 72
Rule 446
Rule 6684
Rule 6725
Rule 6741
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-4+x^2-2 x^3 \log (x)+\left (4+x^2\right ) \log (x) \log (4 \log (x))}{x \left (4-x^2\right ) \log (x) (x-\log (4 \log (x)))} \, dx\\ &=\int \left (\frac {4+x^2}{x \left (-4+x^2\right )}+\frac {-1+x \log (x)}{x \log (x) (x-\log (4 \log (x)))}\right ) \, dx\\ &=\int \frac {4+x^2}{x \left (-4+x^2\right )} \, dx+\int \frac {-1+x \log (x)}{x \log (x) (x-\log (4 \log (x)))} \, dx\\ &=\log (x-\log (4 \log (x)))+\frac {1}{2} \operatorname {Subst}\left (\int \frac {4+x}{(-4+x) x} \, dx,x,x^2\right )\\ &=\log (x-\log (4 \log (x)))+\frac {1}{2} \operatorname {Subst}\left (\int \left (\frac {2}{-4+x}-\frac {1}{x}\right ) \, dx,x,x^2\right )\\ &=-\log (x)+\log \left (4-x^2\right )+\log (x-\log (4 \log (x)))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.17, size = 23, normalized size = 0.88 \begin {gather*} -\log (x)+\log \left (4-x^2\right )+\log (x-\log (4 \log (x))) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 21, normalized size = 0.81 \begin {gather*} \log \left (x^{2} - 4\right ) - \log \relax (x) + \log \left (-x + \log \left (4 \, \log \relax (x)\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.35, size = 21, normalized size = 0.81 \begin {gather*} \log \left (x^{2} - 4\right ) - \log \relax (x) + \log \left (-x + \log \left (4 \, \log \relax (x)\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 22, normalized size = 0.85
method | result | size |
risch | \(-\ln \relax (x )+\ln \left (x^{2}-4\right )+\ln \left (\ln \left (4 \ln \relax (x )\right )-x \right )\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 1.01, size = 25, normalized size = 0.96 \begin {gather*} \log \left (x + 2\right ) + \log \left (x - 2\right ) - \log \relax (x) + \log \left (-x + 2 \, \log \relax (2) + \log \left (\log \relax (x)\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.89, size = 21, normalized size = 0.81 \begin {gather*} \ln \left (\ln \left (4\,\ln \relax (x)\right )-x\right )+\ln \left (x^2-4\right )-\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.34, size = 19, normalized size = 0.73 \begin {gather*} - \log {\relax (x )} + \log {\left (- x + \log {\left (4 \log {\relax (x )} \right )} \right )} + \log {\left (x^{2} - 4 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________