Optimal. Leaf size=22 \[ x^2 \left (7+\frac {1}{10} \left (5+x+5 \log \left ((x+\log (x))^2\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.39, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {10 x+160 x^2+3 x^3+\left (150 x+3 x^2\right ) \log (x)+\left (10 x^2+10 x \log (x)\right ) \log \left (x^2+2 x \log (x)+\log ^2(x)\right )}{10 x+10 \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {10 x+160 x^2+3 x^3+\left (150 x+3 x^2\right ) \log (x)+\left (10 x^2+10 x \log (x)\right ) \log \left (x^2+2 x \log (x)+\log ^2(x)\right )}{10 (x+\log (x))} \, dx\\ &=\frac {1}{10} \int \frac {10 x+160 x^2+3 x^3+\left (150 x+3 x^2\right ) \log (x)+\left (10 x^2+10 x \log (x)\right ) \log \left (x^2+2 x \log (x)+\log ^2(x)\right )}{x+\log (x)} \, dx\\ &=\frac {1}{10} \int \left (\frac {x \left (10+160 x+3 x^2+150 \log (x)+3 x \log (x)\right )}{x+\log (x)}+10 x \log \left ((x+\log (x))^2\right )\right ) \, dx\\ &=\frac {1}{10} \int \frac {x \left (10+160 x+3 x^2+150 \log (x)+3 x \log (x)\right )}{x+\log (x)} \, dx+\int x \log \left ((x+\log (x))^2\right ) \, dx\\ &=\frac {1}{10} \int \left (3 x (50+x)+\frac {10 x (1+x)}{x+\log (x)}\right ) \, dx+\int x \log \left ((x+\log (x))^2\right ) \, dx\\ &=\frac {3}{10} \int x (50+x) \, dx+\int \frac {x (1+x)}{x+\log (x)} \, dx+\int x \log \left ((x+\log (x))^2\right ) \, dx\\ &=\frac {3}{10} \int \left (50 x+x^2\right ) \, dx+\int \left (\frac {x}{x+\log (x)}+\frac {x^2}{x+\log (x)}\right ) \, dx+\int x \log \left ((x+\log (x))^2\right ) \, dx\\ &=\frac {15 x^2}{2}+\frac {x^3}{10}+\int \frac {x}{x+\log (x)} \, dx+\int \frac {x^2}{x+\log (x)} \, dx+\int x \log \left ((x+\log (x))^2\right ) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 25, normalized size = 1.14 \begin {gather*} \frac {1}{10} \left (75 x^2+x^3+5 x^2 \log \left ((x+\log (x))^2\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.49, size = 30, normalized size = 1.36 \begin {gather*} \frac {1}{10} \, x^{3} + \frac {1}{2} \, x^{2} \log \left (x^{2} + 2 \, x \log \relax (x) + \log \relax (x)^{2}\right ) + \frac {15}{2} \, x^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.29, size = 30, normalized size = 1.36 \begin {gather*} \frac {1}{10} \, x^{3} + \frac {1}{2} \, x^{2} \log \left (x^{2} + 2 \, x \log \relax (x) + \log \relax (x)^{2}\right ) + \frac {15}{2} \, x^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.09, size = 94, normalized size = 4.27
method | result | size |
risch | \(x^{2} \ln \left (x +\ln \relax (x )\right )+\frac {x^{3}}{10}-\frac {i \pi \,x^{2} \mathrm {csgn}\left (i \left (x +\ln \relax (x )\right )\right )^{2} \mathrm {csgn}\left (i \left (x +\ln \relax (x )\right )^{2}\right )}{4}+\frac {i \pi \,x^{2} \mathrm {csgn}\left (i \left (x +\ln \relax (x )\right )\right ) \mathrm {csgn}\left (i \left (x +\ln \relax (x )\right )^{2}\right )^{2}}{2}-\frac {i \pi \,x^{2} \mathrm {csgn}\left (i \left (x +\ln \relax (x )\right )^{2}\right )^{3}}{4}+\frac {15 x^{2}}{2}\) | \(94\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.44, size = 20, normalized size = 0.91 \begin {gather*} \frac {1}{10} \, x^{3} + x^{2} \log \left (x + \log \relax (x)\right ) + \frac {15}{2} \, x^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.94, size = 30, normalized size = 1.36 \begin {gather*} \frac {15\,x^2}{2}+\frac {x^3}{10}+\frac {x^2\,\ln \left (x^2+2\,x\,\ln \relax (x)+{\ln \relax (x)}^2\right )}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.42, size = 32, normalized size = 1.45 \begin {gather*} \frac {x^{3}}{10} + \frac {x^{2} \log {\left (x^{2} + 2 x \log {\relax (x )} + \log {\relax (x )}^{2} \right )}}{2} + \frac {15 x^{2}}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________