Optimal. Leaf size=21 \[ -\frac {e^{4/x}}{x}-\frac {x}{5+x} \]
________________________________________________________________________________________
Rubi [A] time = 0.23, antiderivative size = 20, normalized size of antiderivative = 0.95, number of steps used = 5, number of rules used = 4, integrand size = 44, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {1594, 27, 6688, 2288} \begin {gather*} \frac {5}{x+5}-\frac {e^{4/x}}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 27
Rule 1594
Rule 2288
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-5 x^3+e^{4/x} \left (100+65 x+14 x^2+x^3\right )}{x^3 \left (25+10 x+x^2\right )} \, dx\\ &=\int \frac {-5 x^3+e^{4/x} \left (100+65 x+14 x^2+x^3\right )}{x^3 (5+x)^2} \, dx\\ &=\int \left (\frac {e^{4/x} (4+x)}{x^3}-\frac {5}{(5+x)^2}\right ) \, dx\\ &=\frac {5}{5+x}+\int \frac {e^{4/x} (4+x)}{x^3} \, dx\\ &=-\frac {e^{4/x}}{x}+\frac {5}{5+x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 20, normalized size = 0.95 \begin {gather*} -\frac {e^{4/x}}{x}+\frac {5}{5+x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 25, normalized size = 1.19 \begin {gather*} -\frac {{\left (x + 5\right )} e^{\frac {4}{x}} - 5 \, x}{x^{2} + 5 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 34, normalized size = 1.62 \begin {gather*} -\frac {\frac {e^{\frac {4}{x}}}{x} + \frac {5 \, e^{\frac {4}{x}}}{x^{2}} + 1}{\frac {5}{x} + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.13, size = 20, normalized size = 0.95
method | result | size |
risch | \(\frac {5}{5+x}-\frac {{\mathrm e}^{\frac {4}{x}}}{x}\) | \(20\) |
derivativedivides | \(-\frac {2}{\frac {10}{x}+2}-\frac {{\mathrm e}^{\frac {4}{x}}}{x}\) | \(26\) |
default | \(-\frac {2}{\frac {10}{x}+2}-\frac {{\mathrm e}^{\frac {4}{x}}}{x}\) | \(26\) |
norman | \(\frac {5 x^{2}-x^{2} {\mathrm e}^{\frac {4}{x}}-5 x \,{\mathrm e}^{\frac {4}{x}}}{x^{2} \left (5+x \right )}\) | \(40\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {5}{x + 5} + \int \frac {{\left (x + 4\right )} e^{\frac {4}{x}}}{x^{3}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.79, size = 29, normalized size = 1.38 \begin {gather*} -\frac {5\,{\mathrm {e}}^{4/x}+x\,\left ({\mathrm {e}}^{4/x}-5\right )}{x\,\left (x+5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 10, normalized size = 0.48 \begin {gather*} \frac {5}{x + 5} - \frac {e^{\frac {4}{x}}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________