Optimal. Leaf size=33 \[ -5+\log \left (-x+\frac {1}{\left (-e^2+x\right ) \left (x-\log \left (1+e^{2-x}\right )\right )}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 18.87, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {2 x+e^4 x^2+x^4+e^2 \left (-1-2 x^3\right )+e^{2-x} \left (3 x+e^4 x^2+x^4+e^2 \left (-2-2 x^3\right )\right )+\left (-1-2 e^4 x+4 e^2 x^2-2 x^3+e^{2-x} \left (-1-2 e^4 x+4 e^2 x^2-2 x^3\right )\right ) \log \left (1+e^{2-x}\right )+\left (e^4-2 e^2 x+x^2+e^{2-x} \left (e^4-2 e^2 x+x^2\right )\right ) \log ^2\left (1+e^{2-x}\right )}{-x^2+e^4 x^3+x^5+e^2 \left (x-2 x^4\right )+e^{2-x} \left (-x^2+e^4 x^3+x^5+e^2 \left (x-2 x^4\right )\right )+\left (x-2 e^4 x^2-2 x^4+e^2 \left (-1+4 x^3\right )+e^{2-x} \left (x-2 e^4 x^2-2 x^4+e^2 \left (-1+4 x^3\right )\right )\right ) \log \left (1+e^{2-x}\right )+\left (e^4 x-2 e^2 x^2+x^3+e^{2-x} \left (e^4 x-2 e^2 x^2+x^3\right )\right ) \log ^2\left (1+e^{2-x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^6 x^2+e^{4+x} x^2-2 e^4 \left (1+x^3\right )+e^x x \left (2+x^3\right )+e^2 x \left (3+x^3\right )-e^{2+x} \left (1+2 x^3\right )-\left (e^2+e^x\right ) \left (1+2 e^4 x-4 e^2 x^2+2 x^3\right ) \log \left (1+e^{2-x}\right )+\left (e^2+e^x\right ) \left (e^2-x\right )^2 \log ^2\left (1+e^{2-x}\right )}{\left (e^2+e^x\right ) \left (e^2-x\right ) \left (x-\log \left (1+e^{2-x}\right )\right ) \left (1+e^2 x^2-x^3+x \left (-e^2+x\right ) \log \left (1+e^{2-x}\right )\right )} \, dx\\ &=\int \left (-\frac {e^2}{\left (e^2+e^x\right ) \left (x-\log \left (1+e^{2-x}\right )\right ) \left (1+e^2 x^2-x^3-e^2 x \log \left (1+e^{2-x}\right )+x^2 \log \left (1+e^{2-x}\right )\right )}+\frac {-e^2+2 x+e^4 x^2-2 e^2 x^3+x^4-\log \left (1+e^{2-x}\right )-2 e^4 x \log \left (1+e^{2-x}\right )+4 e^2 x^2 \log \left (1+e^{2-x}\right )-2 x^3 \log \left (1+e^{2-x}\right )+e^4 \log ^2\left (1+e^{2-x}\right )-2 e^2 x \log ^2\left (1+e^{2-x}\right )+x^2 \log ^2\left (1+e^{2-x}\right )}{\left (e^2-x\right ) \left (x-\log \left (1+e^{2-x}\right )\right ) \left (1+e^2 x^2-x^3-e^2 x \log \left (1+e^{2-x}\right )+x^2 \log \left (1+e^{2-x}\right )\right )}\right ) \, dx\\ &=-\left (e^2 \int \frac {1}{\left (e^2+e^x\right ) \left (x-\log \left (1+e^{2-x}\right )\right ) \left (1+e^2 x^2-x^3-e^2 x \log \left (1+e^{2-x}\right )+x^2 \log \left (1+e^{2-x}\right )\right )} \, dx\right )+\int \frac {-e^2+2 x+e^4 x^2-2 e^2 x^3+x^4-\log \left (1+e^{2-x}\right )-2 e^4 x \log \left (1+e^{2-x}\right )+4 e^2 x^2 \log \left (1+e^{2-x}\right )-2 x^3 \log \left (1+e^{2-x}\right )+e^4 \log ^2\left (1+e^{2-x}\right )-2 e^2 x \log ^2\left (1+e^{2-x}\right )+x^2 \log ^2\left (1+e^{2-x}\right )}{\left (e^2-x\right ) \left (x-\log \left (1+e^{2-x}\right )\right ) \left (1+e^2 x^2-x^3-e^2 x \log \left (1+e^{2-x}\right )+x^2 \log \left (1+e^{2-x}\right )\right )} \, dx\\ &=-\left (e^2 \int \frac {1}{\left (e^2+e^x\right ) \left (x-\log \left (1+e^{2-x}\right )\right ) \left (1+e^2 x^2-x^3-e^2 x \log \left (1+e^{2-x}\right )+x^2 \log \left (1+e^{2-x}\right )\right )} \, dx\right )+\int \frac {e^4 x^2+x \left (2+x^3\right )-e^2 \left (1+2 x^3\right )-\left (1+2 e^4 x-4 e^2 x^2+2 x^3\right ) \log \left (1+e^{2-x}\right )+\left (e^2-x\right )^2 \log ^2\left (1+e^{2-x}\right )}{\left (e^2-x\right ) \left (x-\log \left (1+e^{2-x}\right )\right ) \left (1+e^2 x^2-x^3+x \left (-e^2+x\right ) \log \left (1+e^{2-x}\right )\right )} \, dx\\ &=-\left (e^2 \int \frac {1}{\left (e^2+e^x\right ) \left (x-\log \left (1+e^{2-x}\right )\right ) \left (1+e^2 x^2-x^3-e^2 x \log \left (1+e^{2-x}\right )+x^2 \log \left (1+e^{2-x}\right )\right )} \, dx\right )+\int \left (\frac {1}{x}+\frac {1}{-x+\log \left (1+e^{2-x}\right )}+\frac {-e^2+2 x+e^4 x^2-2 e^2 x^3+x^4}{x \left (-e^2+x\right ) \left (-1-e^2 x^2+x^3+e^2 x \log \left (1+e^{2-x}\right )-x^2 \log \left (1+e^{2-x}\right )\right )}\right ) \, dx\\ &=\log (x)-e^2 \int \frac {1}{\left (e^2+e^x\right ) \left (x-\log \left (1+e^{2-x}\right )\right ) \left (1+e^2 x^2-x^3-e^2 x \log \left (1+e^{2-x}\right )+x^2 \log \left (1+e^{2-x}\right )\right )} \, dx+\int \frac {1}{-x+\log \left (1+e^{2-x}\right )} \, dx+\int \frac {-e^2+2 x+e^4 x^2-2 e^2 x^3+x^4}{x \left (-e^2+x\right ) \left (-1-e^2 x^2+x^3+e^2 x \log \left (1+e^{2-x}\right )-x^2 \log \left (1+e^{2-x}\right )\right )} \, dx\\ &=\log (x)-e^2 \int \frac {1}{\left (e^2+e^x\right ) \left (x-\log \left (1+e^{2-x}\right )\right ) \left (1+e^2 x^2-x^3-e^2 x \log \left (1+e^{2-x}\right )+x^2 \log \left (1+e^{2-x}\right )\right )} \, dx+\int \frac {1}{-x+\log \left (1+e^{2-x}\right )} \, dx+\int \left (\frac {1}{x \left (-1-e^2 x^2+x^3+e^2 x \log \left (1+e^{2-x}\right )-x^2 \log \left (1+e^{2-x}\right )\right )}+\frac {x^2}{-1-e^2 x^2+x^3+e^2 x \log \left (1+e^{2-x}\right )-x^2 \log \left (1+e^{2-x}\right )}+\frac {1}{\left (e^2-x\right ) \left (1+e^2 x^2-x^3-e^2 x \log \left (1+e^{2-x}\right )+x^2 \log \left (1+e^{2-x}\right )\right )}+\frac {e^2 x}{1+e^2 x^2-x^3-e^2 x \log \left (1+e^{2-x}\right )+x^2 \log \left (1+e^{2-x}\right )}\right ) \, dx\\ &=\log (x)+e^2 \int \frac {x}{1+e^2 x^2-x^3-e^2 x \log \left (1+e^{2-x}\right )+x^2 \log \left (1+e^{2-x}\right )} \, dx-e^2 \int \frac {1}{\left (e^2+e^x\right ) \left (x-\log \left (1+e^{2-x}\right )\right ) \left (1+e^2 x^2-x^3-e^2 x \log \left (1+e^{2-x}\right )+x^2 \log \left (1+e^{2-x}\right )\right )} \, dx+\int \frac {1}{-x+\log \left (1+e^{2-x}\right )} \, dx+\int \frac {1}{x \left (-1-e^2 x^2+x^3+e^2 x \log \left (1+e^{2-x}\right )-x^2 \log \left (1+e^{2-x}\right )\right )} \, dx+\int \frac {x^2}{-1-e^2 x^2+x^3+e^2 x \log \left (1+e^{2-x}\right )-x^2 \log \left (1+e^{2-x}\right )} \, dx+\int \frac {1}{\left (e^2-x\right ) \left (1+e^2 x^2-x^3-e^2 x \log \left (1+e^{2-x}\right )+x^2 \log \left (1+e^{2-x}\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.22, size = 124, normalized size = 3.76 \begin {gather*} -\log \left (e^2-x\right )-\log \left (-x+\log \left (1+e^{2-x}\right )\right )+\log \left (1+2 e^2 x^2-2 x^3-e^2 x \left (x+\log \left (1+e^{2-x}\right )-\log \left (e^2+e^x\right )\right )+x^2 \left (x+\log \left (1+e^{2-x}\right )-\log \left (e^2+e^x\right )\right )-e^2 x \log \left (e^2+e^x\right )+x^2 \log \left (e^2+e^x\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.61, size = 64, normalized size = 1.94 \begin {gather*} \log \relax (x) - \log \left (-x + \log \left (e^{\left (-x + 2\right )} + 1\right )\right ) + \log \left (\frac {x^{3} - x^{2} e^{2} - {\left (x^{2} - x e^{2}\right )} \log \left (e^{\left (-x + 2\right )} + 1\right ) - 1}{x^{2} - x e^{2}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 1.70, size = 67, normalized size = 2.03 \begin {gather*} \log \left (-x^{3} + x^{2} e^{2} + x^{2} \log \left (e^{\left (-x + 2\right )} + 1\right ) - x e^{2} \log \left (e^{\left (-x + 2\right )} + 1\right ) + 1\right ) - \log \left (x - e^{2}\right ) - \log \left (x - \log \left (e^{\left (-x + 2\right )} + 1\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 57, normalized size = 1.73
method | result | size |
risch | \(\ln \relax (x )+\ln \left (\ln \left ({\mathrm e}^{2-x}+1\right )-\frac {x^{2} {\mathrm e}^{2}-x^{3}+1}{x \left ({\mathrm e}^{2}-x \right )}\right )-\ln \left (-x +\ln \left ({\mathrm e}^{2-x}+1\right )\right )\) | \(57\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 1.35, size = 61, normalized size = 1.85 \begin {gather*} \log \relax (x) - \log \left (-2 \, x + \log \left (e^{2} + e^{x}\right )\right ) + \log \left (-\frac {2 \, x^{3} - 2 \, x^{2} e^{2} - {\left (x^{2} - x e^{2}\right )} \log \left (e^{2} + e^{x}\right ) - 1}{x^{2} - x e^{2}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {2\,x+{\mathrm {e}}^{2-x}\,\left (3\,x-{\mathrm {e}}^2\,\left (2\,x^3+2\right )+x^2\,{\mathrm {e}}^4+x^4\right )-{\mathrm {e}}^2\,\left (2\,x^3+1\right )+x^2\,{\mathrm {e}}^4-\ln \left ({\mathrm {e}}^{2-x}+1\right )\,\left (2\,x\,{\mathrm {e}}^4+{\mathrm {e}}^{2-x}\,\left (2\,x^3-4\,{\mathrm {e}}^2\,x^2+2\,{\mathrm {e}}^4\,x+1\right )-4\,x^2\,{\mathrm {e}}^2+2\,x^3+1\right )+{\ln \left ({\mathrm {e}}^{2-x}+1\right )}^2\,\left ({\mathrm {e}}^4-2\,x\,{\mathrm {e}}^2+{\mathrm {e}}^{2-x}\,\left (x^2-2\,{\mathrm {e}}^2\,x+{\mathrm {e}}^4\right )+x^2\right )+x^4}{{\ln \left ({\mathrm {e}}^{2-x}+1\right )}^2\,\left ({\mathrm {e}}^{2-x}\,\left (x^3-2\,{\mathrm {e}}^2\,x^2+{\mathrm {e}}^4\,x\right )+x\,{\mathrm {e}}^4-2\,x^2\,{\mathrm {e}}^2+x^3\right )+x^3\,{\mathrm {e}}^4+\ln \left ({\mathrm {e}}^{2-x}+1\right )\,\left (x+{\mathrm {e}}^{2-x}\,\left (x+{\mathrm {e}}^2\,\left (4\,x^3-1\right )-2\,x^2\,{\mathrm {e}}^4-2\,x^4\right )+{\mathrm {e}}^2\,\left (4\,x^3-1\right )-2\,x^2\,{\mathrm {e}}^4-2\,x^4\right )+{\mathrm {e}}^2\,\left (x-2\,x^4\right )-x^2+x^5+{\mathrm {e}}^{2-x}\,\left (x^3\,{\mathrm {e}}^4+{\mathrm {e}}^2\,\left (x-2\,x^4\right )-x^2+x^5\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: PolynomialError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________