Optimal. Leaf size=34 \[ e^{5+\frac {4 e^{2 e^{-x} x} x^2}{5 x+\frac {x}{-1+x}}} x \]
________________________________________________________________________________________
Rubi [F] time = 39.09, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (-x+\frac {-20+25 x+e^{2 e^{-x} x} \left (-4 x+4 x^2\right )}{-4+5 x}\right ) \left (e^x \left (16-40 x+25 x^2\right )+e^{2 e^{-x} x} \left (32 x^2-104 x^3+112 x^4-40 x^5+e^x \left (16 x-32 x^2+20 x^3\right )\right )\right )}{16-40 x+25 x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (-x+\frac {-20+25 x+e^{2 e^{-x} x} \left (-4 x+4 x^2\right )}{-4+5 x}\right ) \left (e^x \left (16-40 x+25 x^2\right )+e^{2 e^{-x} x} \left (32 x^2-104 x^3+112 x^4-40 x^5+e^x \left (16 x-32 x^2+20 x^3\right )\right )\right )}{(-4+5 x)^2} \, dx\\ &=\int \left (\exp \left (\frac {-20+25 x+e^{2 e^{-x} x} \left (-4 x+4 x^2\right )}{-4+5 x}\right )-\frac {4 \exp \left (-x+2 e^{-x} x+\frac {-20+25 x+e^{2 e^{-x} x} \left (-4 x+4 x^2\right )}{-4+5 x}\right ) x \left (-4 e^x-8 x+8 e^x x+26 x^2-5 e^x x^2-28 x^3+10 x^4\right )}{(-4+5 x)^2}\right ) \, dx\\ &=-\left (4 \int \frac {\exp \left (-x+2 e^{-x} x+\frac {-20+25 x+e^{2 e^{-x} x} \left (-4 x+4 x^2\right )}{-4+5 x}\right ) x \left (-4 e^x-8 x+8 e^x x+26 x^2-5 e^x x^2-28 x^3+10 x^4\right )}{(-4+5 x)^2} \, dx\right )+\int \exp \left (\frac {-20+25 x+e^{2 e^{-x} x} \left (-4 x+4 x^2\right )}{-4+5 x}\right ) \, dx\\ &=-\left (4 \int \left (-\frac {8 \exp \left (-x+2 e^{-x} x+\frac {-20+25 x+e^{2 e^{-x} x} \left (-4 x+4 x^2\right )}{-4+5 x}\right ) x^2}{(-4+5 x)^2}+\frac {26 \exp \left (-x+2 e^{-x} x+\frac {-20+25 x+e^{2 e^{-x} x} \left (-4 x+4 x^2\right )}{-4+5 x}\right ) x^3}{(-4+5 x)^2}-\frac {28 \exp \left (-x+2 e^{-x} x+\frac {-20+25 x+e^{2 e^{-x} x} \left (-4 x+4 x^2\right )}{-4+5 x}\right ) x^4}{(-4+5 x)^2}+\frac {10 \exp \left (-x+2 e^{-x} x+\frac {-20+25 x+e^{2 e^{-x} x} \left (-4 x+4 x^2\right )}{-4+5 x}\right ) x^5}{(-4+5 x)^2}-\frac {\exp \left (2 e^{-x} x+\frac {-20+25 x+e^{2 e^{-x} x} \left (-4 x+4 x^2\right )}{-4+5 x}\right ) x \left (4-8 x+5 x^2\right )}{(-4+5 x)^2}\right ) \, dx\right )+\int \exp \left (\frac {-20+25 x+e^{2 e^{-x} x} \left (-4 x+4 x^2\right )}{-4+5 x}\right ) \, dx\\ &=4 \int \frac {\exp \left (2 e^{-x} x+\frac {-20+25 x+e^{2 e^{-x} x} \left (-4 x+4 x^2\right )}{-4+5 x}\right ) x \left (4-8 x+5 x^2\right )}{(-4+5 x)^2} \, dx+32 \int \frac {\exp \left (-x+2 e^{-x} x+\frac {-20+25 x+e^{2 e^{-x} x} \left (-4 x+4 x^2\right )}{-4+5 x}\right ) x^2}{(-4+5 x)^2} \, dx-40 \int \frac {\exp \left (-x+2 e^{-x} x+\frac {-20+25 x+e^{2 e^{-x} x} \left (-4 x+4 x^2\right )}{-4+5 x}\right ) x^5}{(-4+5 x)^2} \, dx-104 \int \frac {\exp \left (-x+2 e^{-x} x+\frac {-20+25 x+e^{2 e^{-x} x} \left (-4 x+4 x^2\right )}{-4+5 x}\right ) x^3}{(-4+5 x)^2} \, dx+112 \int \frac {\exp \left (-x+2 e^{-x} x+\frac {-20+25 x+e^{2 e^{-x} x} \left (-4 x+4 x^2\right )}{-4+5 x}\right ) x^4}{(-4+5 x)^2} \, dx+\int \exp \left (\frac {-20+25 x+e^{2 e^{-x} x} \left (-4 x+4 x^2\right )}{-4+5 x}\right ) \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.26, size = 29, normalized size = 0.85 \begin {gather*} e^{5+\frac {4 e^{2 e^{-x} x} (-1+x) x}{-4+5 x}} x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.09, size = 41, normalized size = 1.21 \begin {gather*} x e^{\left (x - \frac {5 \, x^{2} - 4 \, {\left (x^{2} - x\right )} e^{\left (2 \, x e^{\left (-x\right )}\right )} - 29 \, x + 20}{5 \, x - 4}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {{\left (4 \, {\left (10 \, x^{5} - 28 \, x^{4} + 26 \, x^{3} - 8 \, x^{2} - {\left (5 \, x^{3} - 8 \, x^{2} + 4 \, x\right )} e^{x}\right )} e^{\left (2 \, x e^{\left (-x\right )}\right )} - {\left (25 \, x^{2} - 40 \, x + 16\right )} e^{x}\right )} e^{\left (-x + \frac {4 \, {\left (x^{2} - x\right )} e^{\left (2 \, x e^{\left (-x\right )}\right )} + 25 \, x - 20}{5 \, x - 4}\right )}}{25 \, x^{2} - 40 \, x + 16}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.52, size = 41, normalized size = 1.21
method | result | size |
risch | \(x \,{\mathrm e}^{\frac {4 \,{\mathrm e}^{2 x \,{\mathrm e}^{-x}} x^{2}-4 \,{\mathrm e}^{2 x \,{\mathrm e}^{-x}} x +25 x -20}{5 x -4}}\) | \(41\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.97, size = 43, normalized size = 1.26 \begin {gather*} x e^{\left (\frac {4}{5} \, x e^{\left (2 \, x e^{\left (-x\right )}\right )} - \frac {16 \, e^{\left (2 \, x e^{\left (-x\right )}\right )}}{25 \, {\left (5 \, x - 4\right )}} - \frac {4}{25} \, e^{\left (2 \, x e^{\left (-x\right )}\right )} + 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.11, size = 63, normalized size = 1.85 \begin {gather*} x\,{\mathrm {e}}^{-\frac {4\,x\,{\mathrm {e}}^{2\,x\,{\mathrm {e}}^{-x}}}{5\,x-4}}\,{\mathrm {e}}^{-\frac {20}{5\,x-4}}\,{\mathrm {e}}^{\frac {4\,x^2\,{\mathrm {e}}^{2\,x\,{\mathrm {e}}^{-x}}}{5\,x-4}}\,{\mathrm {e}}^{\frac {25\,x}{5\,x-4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 109.77, size = 29, normalized size = 0.85 \begin {gather*} x e^{\frac {25 x + \left (4 x^{2} - 4 x\right ) e^{2 x e^{- x}} - 20}{5 x - 4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________