3.30.70
Optimal. Leaf size=33
________________________________________________________________________________________
Rubi [B] time = 0.38, antiderivative size = 93, normalized size of antiderivative =
2.82, number of steps used = 17, number of rules used = 12, integrand size = 42, =
0.286, Rules used = {6741, 6742, 2184, 2190, 2279, 2391, 2185, 2191, 2282, 36, 29, 31}
Antiderivative was successfully verified.
[In]
Int[(2 + E^(2*x)*(70 - 50*x) - 2*x + E^x*(-32 + 16*x))/(1 - 10*E^x + 25*E^(2*x)),x]
[Out]
-1/25*(7 - 5*x)^2 + (4*x)/5 + (2*(1 + x)^2)/5 - (4*(2 + x))/(5*(1 - 5*E^x)) - (2*(2 + x)^2)/5 - (4*Log[1 - 5*E
^x])/5 - (4*(1 + x)*Log[1 - 5*E^x])/5 + (4*(2 + x)*Log[1 - 5*E^x])/5
Rule 29
Int[(x_)^(-1), x_Symbol] :> Simp[Log[x], x]
Rule 31
Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]
Rule 36
Int[1/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :> Dist[b/(b*c - a*d), Int[1/(a + b*x), x], x] -
Dist[d/(b*c - a*d), Int[1/(c + d*x), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0]
Rule 2184
Int[((c_.) + (d_.)*(x_))^(m_.)/((a_) + (b_.)*((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp[(c
+ d*x)^(m + 1)/(a*d*(m + 1)), x] - Dist[b/a, Int[((c + d*x)^m*(F^(g*(e + f*x)))^n)/(a + b*(F^(g*(e + f*x)))^n)
, x], x] /; FreeQ[{F, a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]
Rule 2185
Int[((a_) + (b_.)*((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.))^(p_)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Dis
t[1/a, Int[(c + d*x)^m*(a + b*(F^(g*(e + f*x)))^n)^(p + 1), x], x] - Dist[b/a, Int[(c + d*x)^m*(F^(g*(e + f*x)
))^n*(a + b*(F^(g*(e + f*x)))^n)^p, x], x] /; FreeQ[{F, a, b, c, d, e, f, g, n}, x] && ILtQ[p, 0] && IGtQ[m, 0
]
Rule 2190
Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/((a_) + (b_.)*((F_)^((g_.)*((e_.) +
(f_.)*(x_))))^(n_.)), x_Symbol] :> Simp[((c + d*x)^m*Log[1 + (b*(F^(g*(e + f*x)))^n)/a])/(b*f*g*n*Log[F]), x]
- Dist[(d*m)/(b*f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*Log[1 + (b*(F^(g*(e + f*x)))^n)/a], x], x] /; FreeQ[{F,
a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]
Rule 2191
Int[((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((a_.) + (b_.)*((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.))^(p_.)*
((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[((c + d*x)^m*(a + b*(F^(g*(e + f*x)))^n)^(p + 1))/(b*f*g*n*(p +
1)*Log[F]), x] - Dist[(d*m)/(b*f*g*n*(p + 1)*Log[F]), Int[(c + d*x)^(m - 1)*(a + b*(F^(g*(e + f*x)))^n)^(p + 1
), x], x] /; FreeQ[{F, a, b, c, d, e, f, g, m, n, p}, x] && NeQ[p, -1]
Rule 2279
Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]
Rule 2282
Int[u_, x_Symbol] :> With[{v = FunctionOfExponential[u, x]}, Dist[v/D[v, x], Subst[Int[FunctionOfExponentialFu
nction[u, x]/x, x], x, v], x]] /; FunctionOfExponentialQ[u, x] && !MatchQ[u, (w_)*((a_.)*(v_)^(n_))^(m_) /; F
reeQ[{a, m, n}, x] && IntegerQ[m*n]] && !MatchQ[u, E^((c_.)*((a_.) + (b_.)*x))*(F_)[v_] /; FreeQ[{a, b, c}, x
] && InverseFunctionQ[F[x]]]
Rule 2391
Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> -Simp[PolyLog[2, -(c*e*x^n)]/n, x] /; FreeQ[{c, d,
e, n}, x] && EqQ[c*d, 1]
Rule 6741
Int[u_, x_Symbol] :> With[{v = NormalizeIntegrand[u, x]}, Int[v, x] /; v =!= u]
Rule 6742
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 31, normalized size = 0.94
Antiderivative was successfully verified.
[In]
Integrate[(2 + E^(2*x)*(70 - 50*x) - 2*x + E^x*(-32 + 16*x))/(1 - 10*E^x + 25*E^(2*x)),x]
[Out]
-2*((-7*x)/5 + x^2/2 - (2*(2 + x))/(5*(-1 + 5*E^x)))
________________________________________________________________________________________
fricas [A] time = 0.92, size = 33, normalized size = 1.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-50*x+70)*exp(x)^2+(16*x-32)*exp(x)-2*x+2)/(25*exp(x)^2-10*exp(x)+1),x, algorithm="fricas")
[Out]
1/5*(5*x^2 - 5*(5*x^2 - 14*x)*e^x - 10*x + 8)/(5*e^x - 1)
________________________________________________________________________________________
giac [A] time = 0.18, size = 32, normalized size = 0.97
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-50*x+70)*exp(x)^2+(16*x-32)*exp(x)-2*x+2)/(25*exp(x)^2-10*exp(x)+1),x, algorithm="giac")
[Out]
-1/5*(25*x^2*e^x - 5*x^2 - 70*x*e^x + 10*x - 8)/(5*e^x - 1)
________________________________________________________________________________________
maple [A] time = 0.07, size = 23, normalized size = 0.70
|
|
|
method |
result |
size |
|
|
|
risch |
|
|
norman |
|
|
default |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((-50*x+70)*exp(x)^2+(16*x-32)*exp(x)-2*x+2)/(25*exp(x)^2-10*exp(x)+1),x,method=_RETURNVERBOSE)
[Out]
-x^2+14/5*x+4/5*(2+x)/(5*exp(x)-1)
________________________________________________________________________________________
maxima [B] time = 0.84, size = 60, normalized size = 1.82
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-50*x+70)*exp(x)^2+(16*x-32)*exp(x)-2*x+2)/(25*exp(x)^2-10*exp(x)+1),x, algorithm="maxima")
[Out]
2*x + 1/5*(5*x^2 - 5*(5*x^2 - 4*x)*e^x + 18)/(5*e^x - 1) - 2/(5*e^x - 1) - 2*log(5*e^x - 1) + 2*log(e^x - 1/5)
________________________________________________________________________________________
mupad [B] time = 1.79, size = 23, normalized size = 0.70
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(2*x - exp(x)*(16*x - 32) + exp(2*x)*(50*x - 70) - 2)/(25*exp(2*x) - 10*exp(x) + 1),x)
[Out]
(14*x)/5 + ((4*x)/5 + 8/5)/(5*exp(x) - 1) - x^2
________________________________________________________________________________________
sympy [A] time = 0.11, size = 19, normalized size = 0.58
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-50*x+70)*exp(x)**2+(16*x-32)*exp(x)-2*x+2)/(25*exp(x)**2-10*exp(x)+1),x)
[Out]
-x**2 + 14*x/5 + (4*x + 8)/(25*exp(x) - 5)
________________________________________________________________________________________